

[Oral] Statistically Optimal K-means Clustering via Nonnegative Low-rank Semidefinite Programming

Yubo Zhuang¹, Xiaohui Chen², Yun Yang¹, Richard Y. Zhang³. ¹UIUC Statistics, ²USC Mathematics, ³UIUC ECE

yubo2@illinois.edu, xiaohuic@usc.edu, yy84@illinois.edu, ryz@illinois.edu

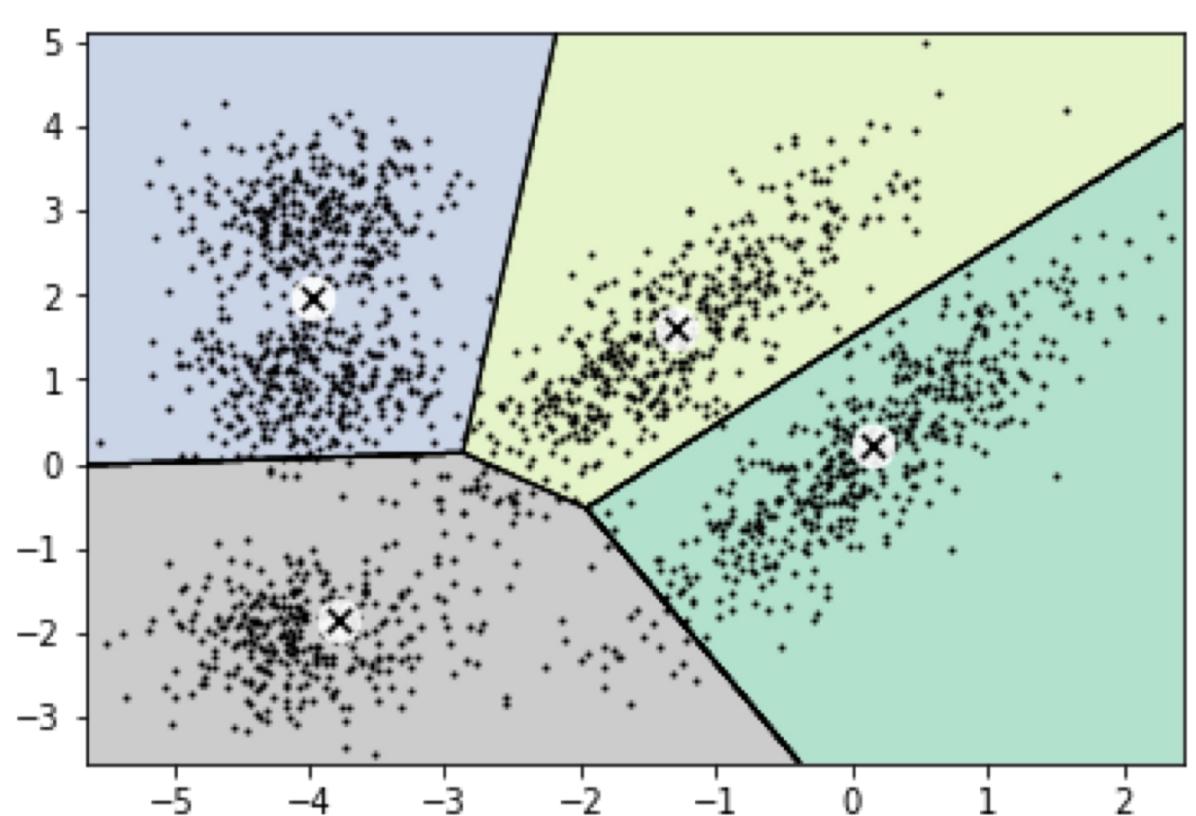
Summary & Highlight

- Clustering is a hard problem: computationally & statistically.
- Various approximations and relaxations: Lloyd, spectral, nonnegative matrix factorization (NMF), semidefinite programming (SDP).
- SDP achieves sharp information-theoretical threshold for exact recovery.
- **Goal: computational scalability and strong theoretical guarantee.**
- **This paper: an algorithm simultaneously achieving $O(n)$ per iteration complexity + local linear convergence + same SDP recovery guarantee.**
- Future work: Partial recovery? Optimization landscape?

Clustering analysis: divide data $x_1, \dots, x_n \in \mathbb{R}^p$ into K groups G_1^*, \dots, G_K^* based on their similarity.

K-means clustering (NP-hard):

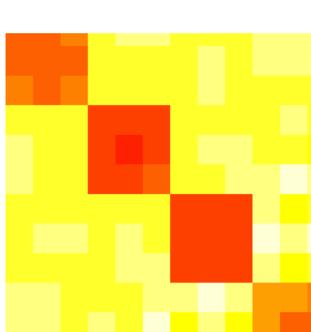
$$\max_{G_1, \dots, G_K} \sum_{k=1}^K \frac{1}{|G_k|} \sum_{i \in G_k} \sum_{j \in G_k} x_i^T x_j \quad \text{subject to} \quad \bigsqcup_{k=1}^K G_k = [n].$$



Relaxed formulations

SDP (Peng & Wei 2007; Giraud & Verzelen 2018)

$$\max_{Z \in \mathbb{R}^{n \times n}} \langle XX^T, Z \rangle \\ \text{s.t. } Z \succeq 0, Z1_n = 1_n, \text{tr}(Z) = K, Z \geq 0.$$



$$Z^* = U^*(U^*)^T$$

Clustering membership matrix
Low-rank solution

NMF (He et al. 2011; Kuang et al. 2015)

$$\min_{U \in \mathbb{R}^{n \times r}} \|XX^T - UU^T\|_F \\ \text{s.t. } U \geq 0.$$

Exact recovery sharp information-threshold

$$\Theta^2 = 4\sigma^2 \left(1 + \sqrt{1 + \frac{Kp}{n \log n}} \right) \log n$$

Gaussian mixture model (GMM): $i \in G_k^* \Rightarrow x_i = \mu_k + \varepsilon_i, \varepsilon_i \sim N(0, \sigma^2 I_p)$.

Minimum centroid separation (statistical hardness): $\Theta_{\min} := \min_{1 \leq j \neq k \leq K} \|\mu_j - \mu_k\|_2$

(-) $\Theta_{\min} \leq (1 - \delta)\bar{\Theta} \rightarrow$ No algorithm (regardless complexity) can exactly recover G_1^*, \dots, G_K^*

(+) $\Theta_{\min} \geq (1 + \delta)\bar{\Theta} \rightarrow$ Unique SDP solution that perfectly recovers G_1^*, \dots, G_K^*

Nonnegative low-rank (NLR) factorization formulation

$$\max_{U \in \mathbb{R}^{n \times r}} \left\{ \langle XX^T, UU^T \rangle : UU^T 1_n = 1_n, \|U\|_F^2 = K, U \geq 0 \right\}.$$

Algorithm design

$$\max_{U \in \mathbb{R}^{n \times r}} \left\{ \langle XX^T, UU^T \rangle : \underbrace{UU^T 1_n = 1_n}_{\text{dual}} \underbrace{\|U\|_F^2 = K, U \geq 0}_{\text{primal} =: \Omega} \right\}.$$

Key insight: primal constraints can be analytically solved by projection onto Ω .

Augmented Lagrangian method (ALM)

$$\mathcal{L}_\beta(U, y) = \langle L \cdot \text{Id}_n - XX^T, UU^T \rangle + \langle y, UU^T 1_n - 1_n \rangle + \frac{\beta}{2} \|UU^T 1_n - 1_n\|^2.$$

iterate between:

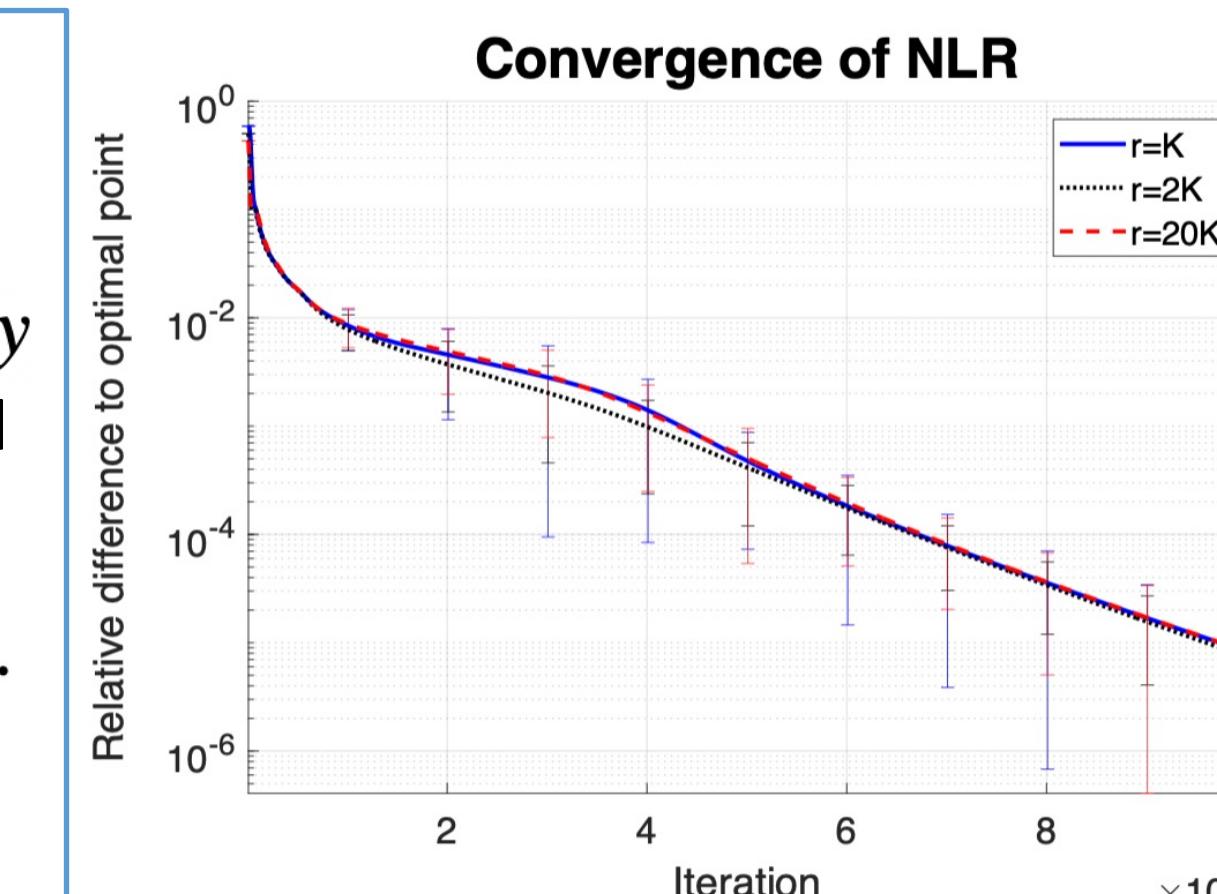
- **Primal update:** $U_{\text{new}} := U_{\text{new}, y} = \arg \min_{U \in \Omega} \{f(U) := \mathcal{L}_\beta(U, y)\}$
via iterative projected gradient descent $U^{t+1} = \Pi_\Omega(U^t - \alpha \nabla f(U^t))$.
- **Dual update (one-step):** $y_{\text{new}} = y + \beta(U_{\text{new}} U_{\text{new}}^T 1_n - 1_n)$.

Theorem: local linear convergence

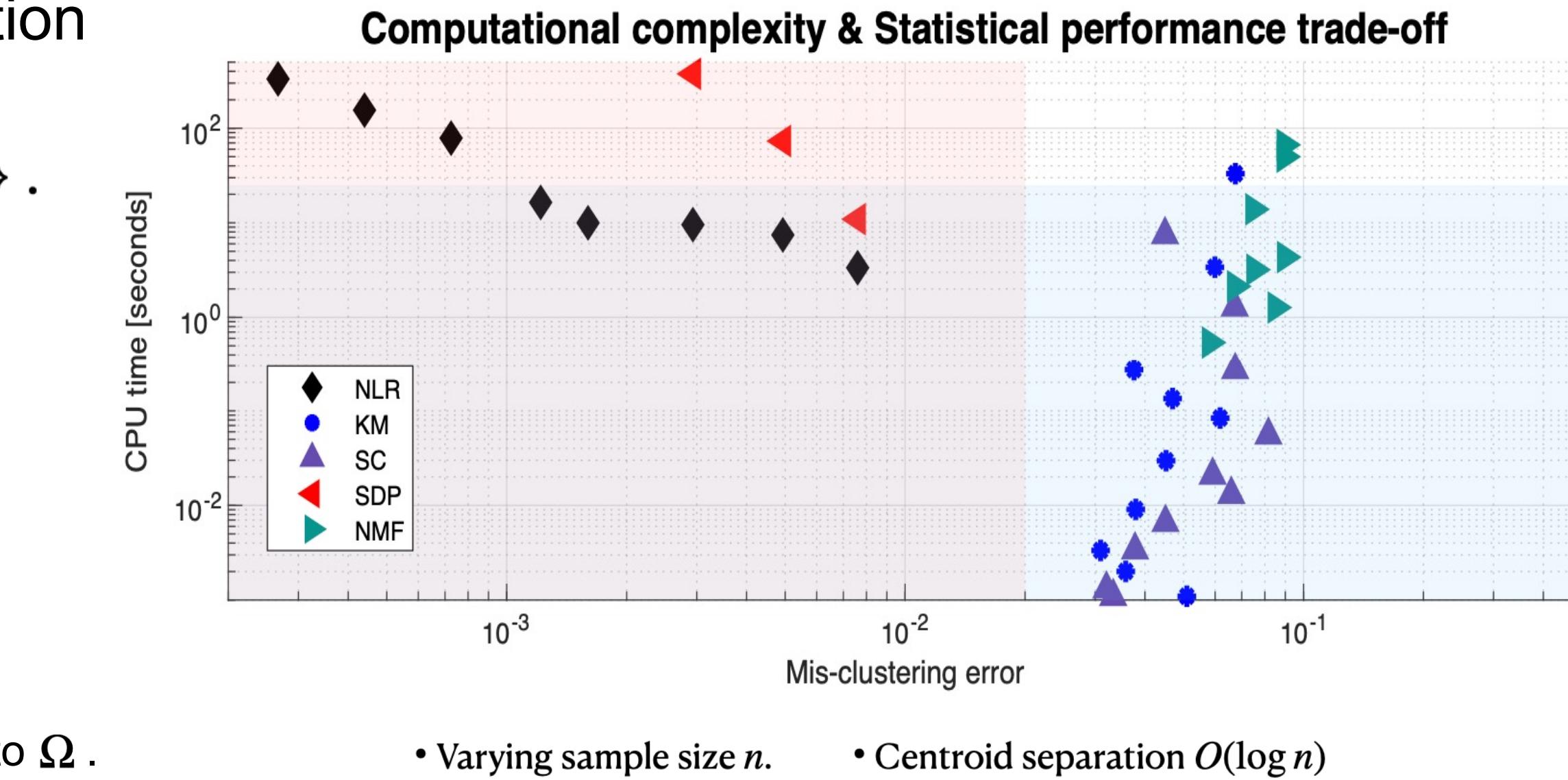
Initialize U^0 within an **O(1)** neighborhood of the optimal solution U^* . Under GMM, if $\Theta_{\min} \geq (1 + \delta)\bar{\Theta}$, then for all y close to the optimal dual y^* and $t > t_0$, we have with high prob

$$\|U^{t+1} - U_y^*\|_F \leq \gamma \|U^t - U_y^*\|_F.$$

Here, $\gamma \in (0, 1)$, U^t is the t -th iterate, and t_0 is a constant.

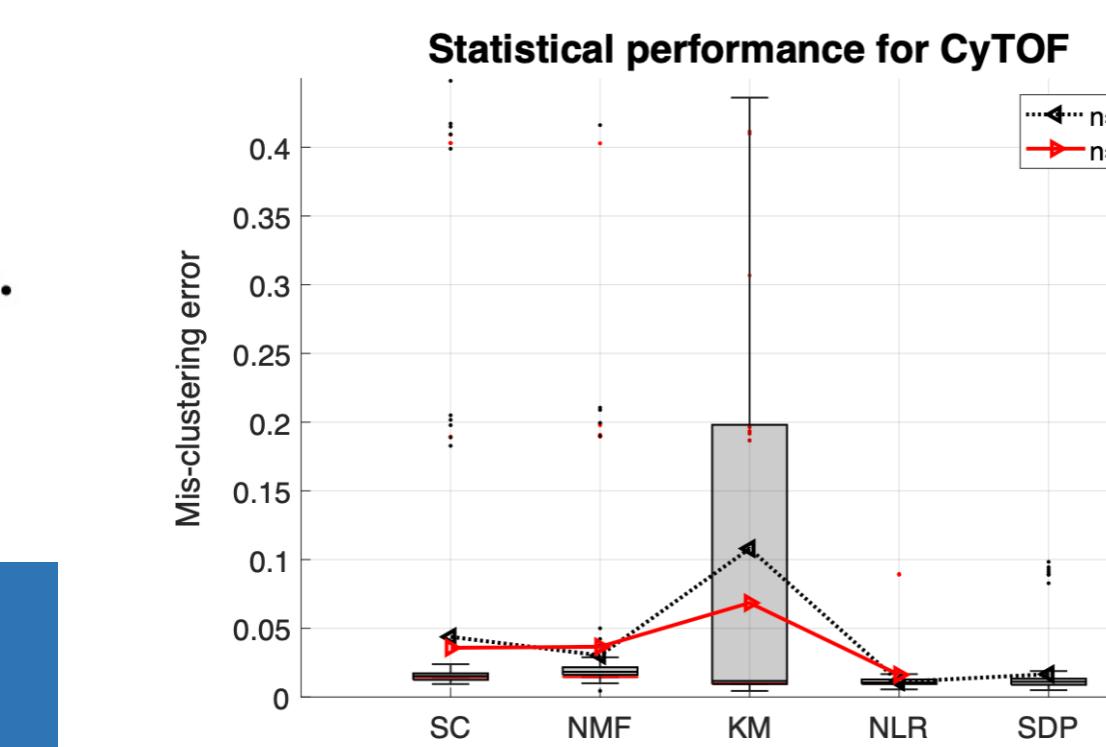


Overall time complexity of NLR: $O(nrK^6)$

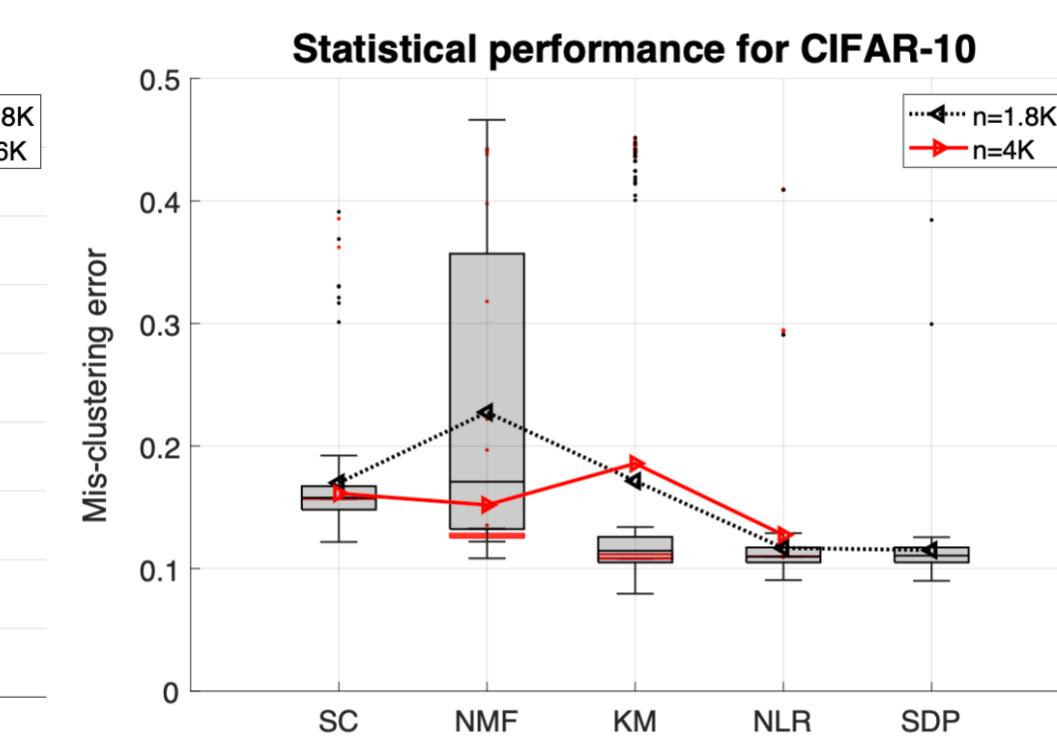


Real-data performance

- Mass cytometry (CyTOF) dataset
- Sample size $n = 1,800, 46,258$.



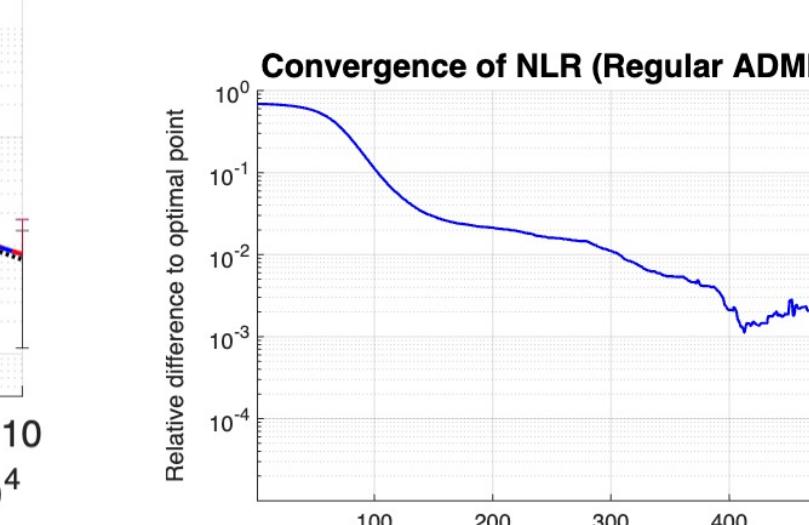
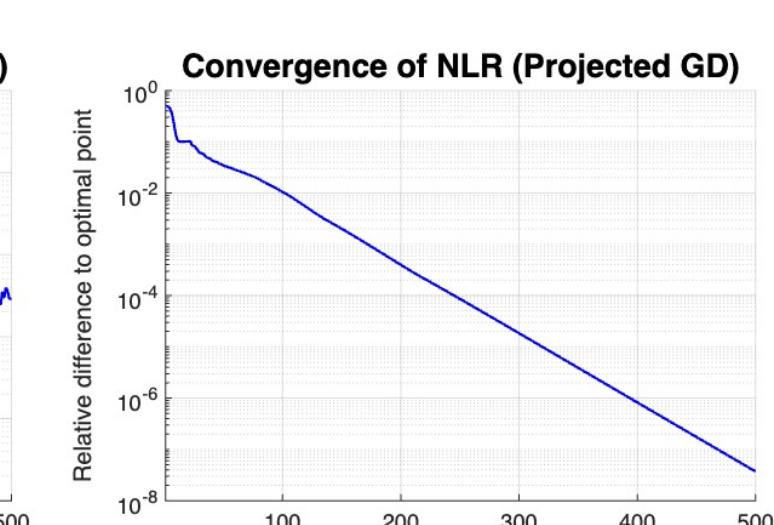
- CIFAR-10 dataset (colored images of size $32 \times 32 \times 3$)
- Sample size $n = 1,800, 4,000$.



Technical highlight: two-phase convergence

Phase 1: PGD becomes block diagonal after $O(K^3)$ iterates.

Phase 2: PGD iterates remain block diagonal and attain linear convergence rate since ALM objective function is (locally) restricted strongly convex.



arXiv: 2305.18436

