
Summary & Highlight
• Clustering is a hard problem: computationally & statistically.
• Various approximations and relaxations: Lloyd, spectral, nonnegative matrix 

factorization (NMF), semidefinite programming (SDP). 
• SDP achieves sharp information-theoretical threshold for exact recovery.
• Goal: computational scalability and strong theoretical guarantee.
• This paper: an algorithm simultaneously achieving O(n) per iteration 

complexity + local linear convergence + same SDP recovery guarantee.
• Future work: Partial recovery? Optimization landscape?

[Oral] Statistically Optimal K-means Clustering via 
Nonnegative Low-rank Semidefinite Programming

Clustering analysis: divide data                             into K 
groups                   based on their similarity.

Nonnegative low-rank (NLR) factorization formulation
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Exact recovery sharp information-threshold (Chen & Yang 2021)

Minimum centroid separation (statistical hardness):  

Technical highlight: two-phase convergence
Phase 1: PGD becomes block diagonal after O(K3) iterates.
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Scalability Stability Optimality

NMF + - -

Lloyd + - -

Spectral + + -

SDP - + +

Ours + + +

Relaxed formulations

K-means clustering (NP-hard):

SDP (Peng & Wei 2007; Giraud & Verzelen 2018) NMF (He et al. 2011; Kuang et al. 2015)

Clustering membership matrix

Gaussian mixture model (GMM):

à No algorithm (regardless complexity) can exactly recover 

à Unique SDP solution that perfectly recovers 

(-)
(+)

Low-rank solution

Algorithm design

Augmented Lagrangian method (ALM)

Key insight: primal constraints can be analytically solved by projection onto     .

iterate between:

Theorem: local linear convergence

Initialize      within an O(1) 
neighborhood of the optimal 
solution       . Under GMM, 
if                          ,, then for all    
close to the optimal dual      and 
             we have with high prob

Here,                ,       is the t-th 
iterate, and     is a constant.

Real-data performance

Phase 2: PGD iterates remain block diagonal and attain linear convergence 
rate since ALM objective function is (locally) restricted strongly convex.

Lagrangian function 
contains all constraints.

NLR via primal-dual 
projected gradient descent.Overall time complexity of NLR:


