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Summary & Highlight Nonnegative low-rank (NLR) factorization formulation y Computational cor:plexny&Statlstlcal performance trade-off
Clustering is a hard problem: computationally & statistically. 102;_ ¢ ¢ <
- Various approximations and relaxations: Lloyd, spectral, nonnegative matrix max { (XXT, UUT> . UUTln — 1n9 | U”%, =K, U?> ()} . . o B
factorization (NMF), semidefinite programming (SDP). UeR™" I ¢ ¢ < A >»
« SDP achieves sharp information-theoretical threshold for exact recovery. § ¢ ’x”
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Go.al. computatlonal.scalal-mllty and strong th.eo.retlcal guaraptee.. Algorlthm des'gn 2 - }A
« This paper: an algorithm simultaneously achieving O(n) per iteration = : NLR $
complexity + local linear convergence + same SDP recovery guarantee. & A 22” * AA A
e Future work: Partial recovery? Optimization landscape? max { (XXT, UUT) . UUTln || U”F =K, U> O} 102k : zal; *,
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Clustering analysis: divide data Xy, ..., X, € RP into K dual primal = Q o i
groups G¥, ..., GE based on their similarity. o | | | o
Key insight: primal constraints can be analytically solved by projection onto Q . * Varying sample size n. * Centroid separation O(log n)

K-means Clustering (NP-hard)'

_max Z Z Y xlx subject to |_| G, = [n]. Augmented Lagrangian method (ALM)
-0k k=1 1I€G, JEG, ﬂ
— . _ T T T _ I T _ 2 . * CIFAR-10 dataset (colored images of size
- el oprimalis A ﬂ(U . y) = <L ldn XX . UU ) + ()’, UU'1 n 1 n> + 5 ” UU'1 n 1 n”2 Mass cytometry (CyTOF) dataset %32 % 3)
® Samp]e sizen = 1,800, 46,258. . Sample size n = 1,800, 4,000.
M ' ' ' iterate between:
Statistical performance for CyTOF 0. Statistical performance for CIFAR-10
Lloyd + ; P — - — T N —y ' et =1 8K
y * Primal update: Upew := Upew, = arg glelg {f(U) = Z U, y)} 04l | N T | o
Spectral + + - L . ) , 035 - h 04+ | : .
via iterative projected gradient descent UM = TIo(U’ — a VAUY)). 5 03l
SDP ) ¥ * 2 025" 2 *
— T . ) ) * Dual update (one-step): Ynew = Y + BUnewUnewl, — 1,) - 3 o2 3 .
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Relaxed formulations Theorem: local linear convergence L =N .
SC NMF KM NLR SDP SC NMF KM NLR SDP
SDP (Peng & Wei 2007; Giraud & Verzelen 2018) NMF (He et al. 2011; Kuang et al. 2015)
T . itiali 0 withi Convergence of NLR i I i . -
max (XX",Z) I. Z* = US(U* | min 1xx7 - vu7), initialize U within an O(1) o g - Technical highlight: two-phase convergence
st. Z>0,7Z1,=1 . Clustering membership matrix oer neighborhood of the optimal §> ---------- r=2K Phase 1: PGD becomes block diagonal after O(K3) iterates.
=T s.t. U20. solution U* . Under GMM 5 - - -r=20K
tr(Z) =K, Z > 0. J Low-rank solution _ — ’ = 2 Phase 2: PGD iterates remain block diagonal and attain linear convergence
it ®min > (1+6)® , then for all y § rate since ALM objective function is (locally) restricted strongly convex.
Exact recovery sharp information-threshold (chen & Yang 2021) close to the optimal dualy* and 8 Convergence of NLR (Regular ADMM) Convergence of NLR (Projected GD)
I > 1y, we have with high prob S 1o e " g ) arXiv: 2305.18436
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Gaussian mixture model (GMM): i € G]z" = x; =+ ¢, &~ N, 0-2]p), Here, y € (0,1), U" is the t-th T 40 | | 1 T : :
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Minimum centroid separation (statistical hardness): ©,,;, := min;<; <k ||p; — k|2 | it€rate, and tO IS @ constant. lteration «10* & DO S S — . e
(-) Opin < (1 =86)® - No algorithm (regardless complexity) can exactly recover G#, ..., G _ _ 6 Lagrangi[:::cp:a:ction NLR via pD:iarI,::Zum
Overall time compIeX|ty of NLR: O(an ) contains all constraints. projected gradient descent.

(+) Omin = (1 4+ 8)® > Unique SDP solution that perfectly recovers G, ..., G¥



