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1 Introduction

Consider particles randomly move on the lattice Zn. For x ∈ Zn and t ∈ Z+, let p(x, t) be
the number of “heat” particles in position x at time t. Macroscopically, p(x, t) is observed as
the temperature of the lattice system in position x at time t. Since

p(x, t+ 1) = 2−n
∑

|y−x|1=1

p(y, t), (1)

the discrete version of the time derivative ∂tp is given by

p(x, t+ 1)− p(x, t) = 2−n
∑

|y−x|1=1

[p(y, t)− p(x, t)]. (2)
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In particular, in dimension n = 1, the right-hand side of the last expression equals to

1

2

∑
|y−x|1=1

[p(y, t)− p(x, t)] =
1

2
[(p(x+ 1, t)− p(x, t))− (p(x− 1, t)− p(x, t))] (3)

≈ 1

2

[
∂

∂x
p(x+ 1/2, t)− ∂

∂x
p(x− 1/2, t)

]
≈ ∂2

∂x2
p(x, t). (4)

This gives a discrete analog of the heat equation in 1-dimension:

∂tp =
∂2

∂x2
p(x, t). (5)

Since particles can only moves orthogonally on the lattice Zn, the higher-dimensional heat
equation for (x, t) ∈ Rn × R+ (in an appropriate scaling limit) is given by:

∂tp = ∆p, (6)

where ∆p =
∑n

i=1
∂2

∂x2
i
p = tr(∇2p) = div(∇p),∇p = ( ∂p

∂x1
, . . . , ∂p

∂xn
)T , and div(v) =

∑n
i=1

∂v
∂xi

for a vector field v : Rn → Rn.

2 Heat equation

2.1 Euclidean gradient flow

For u : Rn → R, the Dirichlet energy is defined as

E(u) =

∫
|∇u|2. (7)

Let us = u+ tv, t ∈ R, v : Rn → R be one-parameter family of u. Note that

E(ut) =

∫
|∇u+ s∇v|2 =

∫
|∇u|2 + t2

∫
|∇v|2 + 2t

∫
〈∇u,∇v〉. (8)

If v has compact support, then the integration-by-parts (cf. Lemma A.3) gives

d

dt

∣∣∣∣
t=0

= 2

∫
〈∇u,∇v〉 = −2

∫
vdiv(∇u) = −2

∫
v∆u. (9)

By the Cauchy-Schwarz inequality,∫
v∆u 6

(∫
v2

)1/2(∫
(∆u)2

)1/2

(10)

with equality holds if and only if v = c∆u for some constant c 6= 0. Since v = ∂tu
t, this means

that, up to a multiplicative constant, ut = ∆u is the (negative) gradient flow for the energy
E(u), i.e., if ut = ∆u for u : Rn × R→ R, then

d

dt
E(u(·, t)) = −2

∫
(∆u)2 6 0. (11)
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If further
∫
|u(·, t)| <∞ for each t, then

∂t

∫
u(·, t) =

∫
∂tu(·, t) =

∫
∆u(·, t) = 0, (12)

where the last equality follows from Lemma A.3. Thus
∫
u(·, t) is constant in t, which is the

first law of thermodynamics.
Suppose Ω is a compact subset in Rn and u : Rn × R→ R such that ∂tu(x, t) = ∆u(x, t)

and u|∂Ω = 0. Since u vanishes on ∂Ω, we have∫
Ω
|∇u|2 =

∫
Ω
〈∇u,∇u〉 = −

∫
Ω
u∆u 6

(∫
Ω
u2

)1/2(∫
Ω

(∆u)2

)1/2

. (13)

Theorem 2.1 (Poincaré inequality). If v : Ω→ R such that v|∂Ω = 0, then∫
Ω
v2 6 c

∫
Ω
|∇v|2, (14)

where c is a constant depending on Ω.

By the Poincaré inequality in Theorem 2.1, we have∫
Ω
|∇u|2 6

(
c

∫
Ω
∇u2

)1/2(
−1

2

d

dt
E(u)

)1/2

, (15)

where c is a constant depending on Ω. In particular, if Ω is connected, then c > 0. Then we
have

E(u) =

(∫
Ω
∇u2

)1/2

6 c1/2

(
−1

2

d

dt
E(u)

)1/2

, (16)

i.e.,

E(t) 6 − c
2
E′(t), where E(t) := E(u(·, t)). (17)

Now by the Gronwall lemma, we have

E(t) 6 E(0)e−2t/c, (18)

which means that the energy of the heat flow decays exponentially fast in time.

2.2 Parabolic maximum principle

Theorem 2.2 (Parabolic maximum principle). Let Ω ⊂ Rn be compact and u : Ω× [0, T ]→ R.
If (∂t −∆)u 6 0 on Ω× [0, T ] (i.e., u(x, t) is a sub-solution of the heat equation), then

max
Ω×[0,T ]

u(x, t) = max
(∂Ω×[0,T ])∪(Ω×{0})

u(x, t). (19)

An immediate application of the parabolic maximum principle is the following gradient
estimate on solutions of the heat equation.

Theorem 2.3 (Gradient estimate). Let u : Ω× [0, T ]→ R such that ∂tu = ∆u. Then

max
Ω×[0,T ]

|∇u|2 = max
(∂Ω×[0,T ])∪(Ω×{0})

|∇u|2. (20)
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Proof of Theorem 2.2. First assume (∂t − ∆)u < 0. If the theorem fails, then there exists
(x0, t0) in the interior of Ω× [0, T ] such that

u(x0, t0) = max
Ω×[0,T ]

u(x, t). (21)

Then the first derivative test gives ∇u(x0, t0) = 0 and ∂tu(x0, t0) > 0, and the the second
derivative test gives ∆u(x0, t0) 6 0. Thus at (x0, t0), we have (∂t −∆)u(x0, t0) > 0, which is
a contradiction to the assumption.

Next consider the general case (∂t − ∆)u 6 0. Let vε(x, t) = u(x, t) − εt for ε > 0 and
t ∈ [0, T ]. Then

(∂t −∆)vε = (∂t −∆)u− ε 6 −ε < 0, (22)

so we can apply the above maximum principle to get

max
Ω×[0,T ]

u > max
(∂Ω×[0,T ])∪(Ω×{0})

u > max
(∂Ω×[0,T ])∪(Ω×{0})

vε = max
Ω×[0,T ]

vε = max
Ω×[0,T ]

u− εT. (23)

Now letting ε ↓ 0, all inequalities in the last display become equality and this finishes the
proof. �

Proof of Theorem 2.3. Consider (∂t −∆)|∇u|2. Apply the chain rule to get

∂t|∇u|2 = 〈2∇u,∇ut〉, where ut = ∂tu =
d

dt
u

and

∆|∇u|2 =
n∑
i=1

∂2

∂x2
i

 n∑
j=1

(
∂u

∂xj
u

)2


= 2
n∑

i,j=1

(
∂2

∂xi∂xj
u

)2

+ 2
n∑

i,j=1

∂

∂xj
u · ∂3

∂x2
i ∂xi

u

= 2|∇2u|2F + 2〈∇u,∇∆u〉,

where ∇2u is the n× n Hessian matrix of u and | · |F denotes the Frobenius norm. Then we
have

(∂t −∆)|∇u|2 = 2〈∇u,∇ut〉 − 2|∇2u|2F − 2〈∇u,∇∆u〉
= 2〈∇u,∇(ut −∆u)〉 − 2|∇2u|2F = −2|∇2u|2F 6 0.

Now apply the parabolic maximum principle in Theorem 2.2 to conclude. �

2.3 Heat kernels

Definition 2.4 (Heat kernel). Let Ω ⊂ Rn. A heat kernel is a function H : Ω × Ω × R+ → R
satisfying the following three properties.

1. Symmetry and non-negativity: H(x, y, t) = H(y, x, t) > 0 for all x, y ∈ Ω.
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2. For any fixed y ∈ Ω,
(∂t −∆x)H = 0, (24)

where ∆x is the Laplacian with respect to the x variable.

3. Reproducing property: for u0 : Ω → R such that u0 ∈ C0
c (Ω) (i.e., continuous function

with compact support in Ω), we have∫
Ω
u0(y)H(x, y, t) dy → u0(x), as t ↓ 0. (25)

Property (ii) requires the heat kernel H is the fundamental solution of the heat equation.
In addition, (x, t) 7→

∫
u0(y)H(x, y, t) dy solves the heat equation because

(∂t −∆)

∫
u0(y)H(x, y, t) dy =

∫
u0(y) (∂t −∆x)H(x, y, t) dy = 0.

Corollary 2.5 (Semi-group structure of the heat kernel). Let u0 : Rn → R such that u0 ∈ C0
c .

Then

Ptu0(x) :=

∫
Rn
u0(y)H(x, y, t) dy, t > 0 (26)

forms a semi-group of linear operators such that

(∂t −∆)Ptu0(x) = 0, (27)

Ptu0(x) → u0(x), as t ↓ 0. (28)

2.3.1 Heat kernel on Rn

Let u0 : Rn → R be a continuous function with compact support (i.e., u0 ∈ C0
c ). If u0 does

not grow too fast at infinity, then by the uniqueness the solution of (33) is given by

u(x, t) =

∫
Rn
u0(y)H(x, y, t) dy, (29)

where H : Rn × Rn × R+ → R is the heat kernel on Rn is defined as

H(x, y, t) = (4πt)−n/2 exp

(
−|x− y|

2

4t

)
. (30)

Lemma 2.6 (Heat kernel on Rn). The function H defined in 30 is the heat kernel on Rn.

Proof of Lemma 2.6. Parts (i) and (ii) in Definition 2.4 are obvious. For part (iii), by the
continuity of u0, we have as t ↓ 0,∫

Rn
u0(y)H(x, y, t) dy =

∫
Rn
u0(y) (4πt)−n/2 exp

(
−|x− y|

2

4t

)
︸ ︷︷ ︸

→δx(y)

→ u0(x).

�
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2.3.2 Heat kernel on S1

Consider S1 = R/Z. So ∆u = u′′. We can find an orthonormal basis of eigenfunctions (φi)
∞
i=1

for the Laplacian operator ∆ solving the equation

∆φi + λiφi = 0. (31)

Lemma 2.7 (Heat kernel on S1). The function

H(x, y, t) =

∞∑
i=1

e−λitφi(x)φi(y) (32)

is the heat kernel on S1.

Proof of Lemma 2.7. Symmetry is obvious H(x, y, t) = H(y, x, t). Next we compute

∂tH(x, y, t) =

∞∑
i=1

(−λi)e−λitφi(x)φi(y),

∆xH(x, y, t) =

∞∑
i=1

e−λit∆φi(x)φi(y) =

∞∑
i=1

e−λit(−λi)φi(x)φi(y).

Thus (∂t −∆x)H(x, y, t) = 0 for each fixed y ∈ S. To check the reproducing property, given
the expansion u0(y) =

∑n
i=1 aiφi(y), we have∫

u0(y)H(x, y, t) dy =

∫
S1

∞∑
i=1

u0(y)e−λitφi(x)φi(y) dy

=

∞∑
i=1

e−λitφi(x)

∫
S1

u0(y)φi(y) dy

=

∞∑
i=1

e−λitφi(x)ai.

As t ↓ 0, e−λit → 1 on the compact S1 and∫
S1

u0(y)H(x, y, t) dy →
∞∑
i=1

φi(x)ai = u0(x).

Finally, we check the positivity of H. Suppose there exists (x0, y0, t0) such that H(x0, y0, t0) <
0. Then we can a continuous function u : Rn → R with compact support in a neighborhood
of y0 where H(x0, ·, t0) < 0 such that u > 0 and u 6= 0. By the parabolic maximum principle
in Theorem 2.2, we have

U(x, t) :=

∫
u(y)H(x, y, t) dy > 0.

But

U(x0, t0) =

∫
u(y)︸︷︷︸
>0

H(x0, y, t0)︸ ︷︷ ︸
<0

dy < 0.

So we get a contradiction and we must have H(x, y, t) > 0. �
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2.4 Central limit theorem

Let u0 : Rn → R be a continuous function with compact support (i.e., u0 ∈ C0
c ). Consider the

initial value problem: {
(∂t −∆)u = 0
u(x, 0) = u0(x)

. (33)

Suppose u0 does not grow too fast at infinity. Recall that the uniqueness the solution of (33)
is given by u(x, t) =

∫
Rn u0(y)H(x, y, t) dy, where H is the heat kernel on Rn defined in (30).

A crude bound

|u(x, t)| 6 (4πt)−n/2
∫
Rn
|u0| → 0 as t→∞ (34)

shows that the temperature u(x, t) vanishes in the long-time dynamics. The goal of this
subsection is to show that the solution of the heat equation in (33) tends to Gaussian after
proper rescaling, i.e., the central limit theorem (CLT) behavior.

Theorem 2.8 (Central limit theorem for heat equation). Let

v(x, t) = (4πt)n/2u(
√
tx, t). (35)

Then as t→∞,

v(x, t)→ exp(−|x|2/4)

∫
Rn
u0, (36)

or equivalently u(
√
tx, t)→ G(x)

∫
Rn u0, where

G(x) = (4π)−n/2 exp(−|x|2/4) (37)

is the standard Gaussian in Rn.

Proof of Theorem 2.8. Note that

v(x, t) = (4πt)n/2
∫
u0(y)(4πt)−n/2 exp

(
−|
√
tx− y|2

4t

)
dy

=

∫
u0(y) exp

(
−|x|

2

4
− |y|

2

4t
+

2
√
t〈x, y〉
4t

)
dy

= exp

(
−|x|

2

4

)∫
u0(y) exp

(
−|y|

2

4t︸ ︷︷ ︸
→1

+
〈x, y〉
2
√
t︸ ︷︷ ︸

→1

)
dy

→ exp

(
−|x|

2

4

)∫
u0(y) dy as t→∞.

�

2.4.1 Functional inequalities

The CLT behavior and monotonicity of the heat equation are powerful tools to provide “dy-
namical proofs” of some well-known functional inequalities. The general idea is to use interpo-
lation. To prove a functional inequality, we run two continuous-time heat equations (i.e., heat
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flows) with the initial data given by the left-hand side of the inequality. A key step is to find
a monotonicity (non-decreasing) of the solutions of the heat equations, which means that the
left-hand side of the inequality is smaller than any later time point of the functional. On the
other hand, if we run the heat equations for a long enough time, then we get a CLT behavior
with property rescaling, modulo a constant that depends on the initial data. Those constants
preserve the total energy of the two heat flows which are associated to the right-hand side
of the inequality. Thus when we look at the long-time dynamics of the heat flows, then the
functional with initial data is always less than the time limit. This would prove the desired
inequality.

First, we shall demonstrate the above idea to prove the Hölder inequality.

Theorem 2.9 (Hölder inequality). Let u, v : Rn → R such that u ∈ Lp and v ∈ Lq for p, q > 1
and 1

p + 1
q = 1. Then ∫

|uv| 6
(∫
|u|p
)1/p(∫

|v|q
)1/q

. (38)

Proof of Theorem 2.9. Step 1. By approximation, it is enough to assume u, v are continuous
functions with compact support, i.e., u, v ∈ C0

c (Rn). Let f, g : Rn×R→ R solve the following
initial value problems of the heat equations respectively:{

(∂t −∆)f = 0
f(x, 0) = |u(x)|p and

{
(∂t −∆)g = 0
g(x, 0) = |v(x)|q .

We claim that f, g > 0 because we have by the parabolic maximum principle in Theorem 2.2
that

(∂t −∆)(−f) = 0 =⇒ max{−f(x, t)} = max{−|u(x)|p} 6 0.

Thus f(x, t) > 0, which means that if we start from non-negative initial data, then the solution
of the heat equation remains non-negative.
Step 2. Our next claim is:

∂t

∫
f1/pg1/q > 0, (39)
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which implies that
∫
f1/pg1/q is non-decreasing in t. Indeed, direct computation yields

∂t

∫
f1/pg(1/q) =

∫
p−1f1/p−1ftg

1/q + q−1f1/pg1/q−1gt

=

∫
p−1ftf

−1/qg1/q + q−1gtf
1/pg−1/p

=

∫
p−1(∆f)f−1/qg1/q + q−1(∆g)f1/pg−1/p

= −p−1

∫
〈∇f,∇(f−1/qg1/q)〉 − q−1

∫
〈∇g,∇(g−1/pf1/p)〉

= −p−1

∫
〈∇f,−q−1(∇f)f−1/q−1g1/q + q−1(∇g)f−1/qg1/q−1〉

−q−1

∫
〈∇g,−p−1(∇g)g−1/p−1f1/p + g−1/p(∇f)f1/p−1〉

= (pq)−1

∫
|∇f |2f−1/q−1g1/q + (pq)−1

∫
|∇g|2g−1/p−1f1/p

−2(pq)−1

∫
〈∇f,∇g〉f−1/qg−1/p.

Note that ∣∣∣∣∇ log
f

g

∣∣∣∣2 =

∣∣∣∣∇ff − ∇gg
∣∣∣∣2 =

|∇f |2

f2
+
|∇g|2

g2
− 2〈∇f,∇g〉

fg
.

Combining the last two equations and using p−1 + q−1 = 1, we get

∂t

∫
f1/pg1/q =

∫
1

pq

∣∣∣∣∇ log
f

g

∣∣∣∣2 f1/pq1/q > 0 (40)

with equality attained if and only if u = cv for some constant c 6= 0. This proves the
monotonicity (39).
Step 3. By the CLT in Theorem 2.8, we have

tn/2f(
√
tx, t)→ G(x)

∫
|u|p and tn/2g(

√
tx, t)→ G(x)

∫
|v|q as t→∞,

where G(x) = (4π)−n/2 exp(−|x|2/4). Since ∂t
∫
f1/pg1/q is non-decreasing in t, we have∫

|uv| =
∫
f(x, 0)1/pg(x, 0)1/q 6

∫
f(x, t)1/pg(x, t)1/q, ∀t > 0.

Changing variables x 7→
√
tx for t > 0, it follows that∫

f(x, t)1/pg(x, t)1/q dx =

∫
f(
√
tx, t)1/pg(

√
tx, t)1/qtn/2 dx

=

∫ [
tn/2f(

√
tx, t)

]1/p [
tn/2g(

√
tx, t)

]1/q
dx

↗
∫ [

G(x)

∫
|u|p
]1/p [

G(x)

∫
|v|q
]1/q

dx as t→∞

= (

∫
|u|p)1/p(

∫
|v|q)1/q

∫
G(x) dx

= (

∫
|u|p)1/p(

∫
|v|q)1/q.
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Taking t→∞, we conclude (38). �

In fact, we can prove a general functional inequality using the CLT which includes the
Hölder inequality in Theorem 2.9 as a special case. Let F : R2 → R be a non-decreasing and
concave function, i.e., Fx, Fy > 0 and

∇2F =

(
Fx,x Fx,y
Fy,x Fy,y

)
6 0

as a matrix inequality. If we take F (x, y) = x1/py1/q for x, y > 0, p−1 + q−1 = 1 such that
p, q > 1, then it is easy to check that F is non-decreasing and concave.

Theorem 2.10 (A monotonicity property). Let F : R2 → R be a non-decreasing and concave
function. If the functions f, g : Rn × (0,∞)→ R such that (∂t −∆)f > 0 and (∂t −∆)g > 0,
then the function t 7→

∫
F (f(y, t), g(y, t)) dy is non-decreasing.

Now if we take F (x, y) = x1/py1/q,{
(∂t −∆)f = 0
f(x, 0) = |u(x)|p and

{
(∂t −∆)g = 0
g(x, 0) = |v(x)|q ,

then by Theorem 2.10,∫
|uv| =

∫
f(x, 0)1/pg(x, 0)1/q =

∫
F (f(x, 0), g(x, 0))

6
∫
F (f(x, t), g(x, t)) =

∫
f(x, t)1/pg(x, t)1/q, ∀t > 0.

Letting t → ∞ and using the CLT (same as Step 3 in proving Theorem 2.9), we recover the
Hölder inequality.

The monotonicity property in Theorem 2.10 can be used to prove other inequalities. Below
we give another example.

Lemma 2.11. ∫
|uv|
|u|+ |v|

6

∫
|u|
∫
|v|∫

|u|+
∫
|v|
. (41)

Proof of Lemma 2.11. It suffices to prove that for u, v > 0,∫
uv

u+ v
6

∫
u
∫
v∫

u+
∫
v
.

We shall apply Theorem 2.10 with F (x, y) = xy
x+y for x, y > 0. It is easy to check that F is

non-decreasing and concave. Take{
(∂t −∆)f = 0

f(x, 0) = u(x) > 0
and

{
(∂t −∆)g = 0

g(x, 0) = v(x) > 0
.

By Theorem 2.10,∫
F (f, g) =

∫
f(y, t)g(y, t)

f(y, t) + g(y, t)
dy is non-decreasing in t.

11



Combining this with the CLT (cf. Theorem 2.8), we deduce that∫
uv

u+ v
6
∫ ∫

f(y, t)g(y, t)

f(y, t) + g(y, t)
dy =

∫
tn/2f(

√
ty, t) tn/2g(

√
ty, t)

tn/2f(
√
ty, t) + tn/2g(

√
ty, t)

dy

→
∫

(G(y)
∫
u)(G(y)

∫
v)

G(y)
∫
u+G(y)

∫
v

dy as t→∞

=

∫
u
∫
v∫

u+
∫
v

∫
G(y) dy

=

∫
u
∫
v∫

u+
∫
v
.

�

Proof of Theorem 2.10. We need to show that ∂t
∫
F (f, g) > 0 for t > 0. By the chain rule

and the assumption that f and g are super-solutions of the heat equation, we have

∂t

∫
F (f, g) =

∫
Fxft + Fygt

>
∫
Fx∆f + Fy∆g

= −
∫
〈∇Fx,∇f〉+ 〈∇Fy,∇g〉

= −
∫
Fx,x|∇f |2 + Fx,y〈∇g,∇f〉+ Fy,x〈∇f,∇g〉+ Fy,y|∇g|2

= −
∫

tr

[(
Fx,x Fx,y
Fy,x Fy,y

)
︸ ︷︷ ︸

=∇2F60

(
|∇f |2 〈∇f,∇g〉
〈∇g,∇f〉 |∇g|2

)
︸ ︷︷ ︸

>0 by Cauchy-Schwarz

]

> 0.

�

2.5 Drift Laplacian

Let u : Rn → R and φ : Rn → R. Define the drift Laplacian operator

Lφu = ∆u− 〈∇φ,∇u〉. (42)

It is clear that ∆ = Lconstant. Two other important examples we shall discuss later is φ(x) =
|x|2/4 and φ(x) = −|x|2/4. Note that

Lφu = eφ(e−φ∆u− e−φ〈∇φ,∇u〉) = eφdiv(e−φ∇u). (43)

Suppose that
∫
u2e−φ < ∞ and

∫
|∇u|2e−φ < ∞. Then there is a natural inner product

associated to Lφ:

〈u, v〉φ =

∫
uve−φ (44)
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for u, v ∈ C∞c (Rn), the class of smooth functions with compact support in Rn. Indeed, Lφ is
a self-adjoint operator w.r.t. the weighted L2(e−φdx) because∫

uLφve−φ =

∫
ueφdiv(e−φ∇v)e−φ =

∫
udiv(e−φ∇v) = −

∫
〈∇u,∇v〉e−φ =

∫
vLφue−φ.

(45)
The inner product 〈·, ·〉φ gives the spectral structure of the drift Laplacian operator Lφ. If
Lφu+ λu = 0 for some u 6= 0, then∫

λu2e−φ = −
∫
uLφue−φ =

∫
〈∇u,∇v〉e−φ =

∫
|∇u|2e−φ.

Thus,

λ =

∫
|∇u|2e−φ∫
u2e−φ

> 0 (46)

and λ = 0 if and only if u is (non-zero) constant. Moreover, if Lφu+λu = 0 and Lφv+µv = 0
such that λ 6= µ, µ 6= 0, and u, v 6= 0, then

〈u, v〉φ =

∫
uve−φ =

∫
u

(
Lφv
−µ

)
e−φ = − 1

µ

∫
uLφve−φ

= − 1

µ

∫
vLφue−φ =

λ

µ

∫
vue−φ =

λ

µ
〈v, u〉φ,

which implies that

〈u, v〉φ =

∫
vue−φ = 0.

Thus the eigenfunctions u and v associated with different eigenvalues are orthogonal.

2.5.1 Ornstein-Uhlenbeck operator

The Ornstein-Uhlenbeck operator is the drift Laplacian operator with φ(x) = |x|2/4, i.e.,

LOUu := L |x|2
4

u = ∆u− 〈x
2
,∇u〉. (47)

It is useful to note that the OU operator can be obtained by the (usual) Laplacian and
the heat equation by scaling.

Lemma 2.12 (Connection between heat equation and parabolic OU operator). Let u(x, t) be
the solution of the heat equation (∂t −∆)u(x, t) = 0 for t ∈ R and v(x, s) = u(e−s/2x,−e−s).
Then (∂s − LOU )v(x, s) = 0.

Proof of Lemma 2.12. Denote ut(x, t) as the partial derivative of u(x, t). By the chain rule,
we have

∂sv(x, s) = −1

2
e−s/2〈x,∇u(e−s/2x,−e−s)〉+ e−sut(e

−s/2x,−e−s),

∇v(x, s) = e−s/2∇u(e−s/2x,−e−s),
∆v(x, s) = e−s∆u(e−s/2x,−e−s).
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Then,

(∂s − LOU )v(x, s) = −1

2
e−s/2〈x,∇u(e−s/2x,−e−s)〉+ e−sut(e

−s/2x,−e−s)

−e−s∆u(e−s/2x,−e−s)− 1

2
〈x, e−s/2∇u(e−s/2x,−e−s)〉

= e−s(∂t −∆)u(e−s/2x,−e−s),

showing the desired equivalence. �

When n = 1, the OU operator LOU is also called the Hermite operator, i.e.,

LOUu = u′′ − 1

2
xu′. (48)

It is easy to check that the eigenvalues of the Hermite operator are multiples of 1/2 and the
eigenfunctions are the Hermite polynomials. For instance, (0, 1) is the smallest eigenvalue
and eigenfunction pair because LOU1 = 0; (1/2, x) is the second smallest eigenvalue and
eigenfunction pair because LOUx + x

2 = 0; (1, x2 − 2) is the third smallest eigenvalue and
eigenfunction pair because LOU (x2−2)+(x2−2) = 0, etc. Note that the Hermite polynomials
are orthogonal polynomials w.r.t. the standard Gaussian measure e−x

2/4dx.

2.5.2 Mehler flow

Recall that in Section 2.5.1 (Lemma 2.12), it is shown that u(x, t) solves the heat equation
(∂t−∆)u = 0 if and only if v(x, s) := u(e−s/2x,−e−s) solves (∂s−LOU )v = 0. In this section,
we provide another scaling (forward in time) for the heat equation.

Suppose (∂t −∆)u(x, t) = 0. Let

ũ(x, t) := tn/2u(
√
tx, t). (49)

By the CLT in Theorem 2.8,

ũ(x, t)→ (4π)−n/2 exp(−|x|2/4)

∫
u, as t→∞.

Now changing the time clock t = es, we define

v(x, s) := ũ(x, es) = ens/2u(es/2x, es). (50)

Lemma 2.13 (Connection between heat equation and Mehler flow). Let u : Rn × R→ R and
v be defined in (50). Then u(x, t) solves the solution of the heat equation (∂t −∆)u(x, t) = 0
if and only if v(x, s) solves the equation (∂s − LM )v(x, s) = 0, where

LMv := L
− |x|

2

4

v +
n

2
v = ∆v +

1

2
〈x,∇v〉+

n

2
v (51)

is the Mehler operator.
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Proof of Lemma 2.13. Denote ut(x, t) as the partial derivative of u(x, t). By the chain rule,
we have

∂sv =
n

2
ens/2u+ ens/2

[
1

2
es/2〈x,∇u〉+ esut

]
,

∇v = ens/2es∇u,
∆v = ens/2es∆u,

where v := v(x, s) and u := u(es/2x, es). Then,

(∂s − LM )v =
n

2
ens/2u+

1

2
ens/2es/2〈x,∇u〉+ ens/2esut

−ens/2es∆u− 1

2
〈x,∇u〉ens/2es − n

2
v

= e(n/2+1)s(∂t −∆)u,

showing the desired equivalence. �

Lemma 2.13 shows that we can derive the Mehler flow from the heat flow by properly
scaling over space and (forward in) time. Now consider the fundamental solution of the heat
equation on Rn:

u(x, t) = (4πt)−n/2 exp

(
−|x|

2

4t

)
.

Changing variable t = es, we get

v(x, s) = ens/2u(es/2x, es) = (4π)−n/2 exp

(
−|x|

2

4

)
= G(x),

where G(x) is the standard Gaussian on Rn that does not depend on s. Thus LMG = 0
since (∂s −LM )G = 0 by Lemma 2.13. This means that G is a critical point for the equation
(∂s − LM )v(x, s) = 0 and G is LM -harmonic.The equation (∂s − LM )v = 0 is sometimes
referred as the Mehler flow.

Suppose we run the Mehler flow (∂s −LM )v(x, s) = 0 from an initial data v(x, 0) = v0(x)
with compact support. Then by the CLT in Theorem 2.8, we see that as t = es →∞,

v(x, s) = (es)n/2u(
√
esx, es)→ G(x)

∫
u0,

implying that the Mehler flow v(x, s) converges to a multiple of Gaussian as s→∞ (i.e., long-
time dynamics). The next result shows that the standard Gaussian, modulo multiplicative
constant, is the only LM -harmonic function.

Theorem 2.14 (Gradient flow structure of Melher flow). Let f(x, t) be a function satisfying
f, |∇f | ∈ L2(e|x|

2/4dx). The Mehler flow (∂t − LM )f = 0 is the (negative) gradient flow of
the Mehler energy functional

E(f) =

∫
(|∇f |2 − n

2
f)e|x|

2/4 > 0. (52)

Moreover, LMg = 0 if and only if g = ce−|x|
2/4 for some c > 0.
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Proof of Theorem 2.14. By Lemma 2.15, E(f) > 0 and E(f) = 0 if and only if f(x) =
ce−|x|

2/4. For a function f(x, t), we also write E(t) =
∫

(|∇f |2 − n
2 f)e|x|

2/4. Note that by the
chain rule,

d

dt
E(t) =

∫
(2〈∇f,∇ft〉 − nfft)e|x|

2/4

and

div(fte
|x|2/4∇f) = 〈∇ft, e|x|

2/4∇f〉+ fte
|x|2/4〈x

2
,∇f〉+ fte

|x|2/4∆f

= 〈∇ft,∇f〉e|x|
2/4 + fte

|x|2/4L
− |x|

2

4

f.

We have

d

dt
E(t) = 2

∫
div(fte

|x|2/4∇f)− 2

∫
fte
|x|2/4(L

− |x|
2

4

f +
n

2
f)

= −2

∫
fte
|x|2/4LMf, (53)

where the last equality follows from the divergence theorem under the assumption that
f, |∇f | ∈ L2(e|x|

2/4dx). Choosing ft = LMf , we see that

d

dt
E(t) = −2

∫
(LMf)2e|x|

2/4 6 0,

which means that E(t) is non-increasing in t along the Mehler flow (∂t−LM )f = 0. Moreover,
the energy E(t) = 0 if and only if LMf = 0. This together with Lemma 2.15 imply that
f = ce−|x|

2/4 is the only LM -harmonic function. �

Lemma 2.15. Let E(·) be the Mehler energy defined in (52). If v, |∇v| ∈ L2(e|x|
2/4dx), then

E(v) > 0 and E(v) = 0 if and only if v(x) = ce−|x|
2/4 for some c > 0.

Proof of Lemma 2.15. This lemma follows from Lemma 2.16 with g = e−|x|
2/4 > 0, φ(x) =

−|x|2/4, U(x) = n/2, and L = LM such that LMg = 0. �

Lemma 2.16. Let φ : Rn → R and U : Rn → R. Let Lφw = ∆w − 〈∇φ,∇w〉 and Lw =
Lφw + Uw. If g > 0, Lg 6 0 is a sub-solution of L, and v, |∇v| ∈ L2(e−φdx), then

E(v) =

∫
(|∇v|2 − v2U)e−φ > 0 (54)

and E(v) = 0 if and only if v = cg for some c > 0 provided that v 6= 0.

Proof of Lemma 2.16. Under the assumption v, |∇v| ∈ L2(e−φdx), integration-by-parts en-
sures the uniqueness of the solution to Lg 6 0. Since g > 0, we can take w = log g. Since
∇w = ∇ log g = ∇g

g and

∆w = ∆ log g = div(∇ log g) = div(
∇g
g

) =
∆g

g
− |∇g|

2

g2
,
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we have

Lφw = Lφ log g = ∆ log g − 〈∇φ,∇ log g〉

=
∆g

g
− |∇g|

2

g2
− 〈∇φ, ∇g

g
〉

=
Lφg
g
− |∇g|

2

g2
6 −U − |∇w|2

with equality attained if and only if Lg = 0. Integrating to get∫
v2Lφwe−φ 6 −

∫
v2Ue−φ −

∫
v2|∇w|2e−φ.

Using the inner product structure (45) and recalling v, |∇v| ∈ L2(e−φdx), we have∫
v2Lφwe−φ = −

∫
〈∇v2,∇w〉e−φ = −2

∫
v〈∇v,∇w〉e−φ.

Combining the last two displays, we get∫
v2Ue−φ +

∫
v2|∇w|2e−φ 6 2

∫
v〈∇v,∇w〉e−φ

6 2

∫
|v||∇w||∇v|e−φ

6
∫
v2|∇w|2e−φ +

∫
|∇v|2e−φ,

where the second inequality follows from the Cauchy-Schwarz inequality and the third in-
equality from the elementary inequality 2ab 6 a2 + b2. Now we obtain that∫

v2Ue−φ 6
∫
|∇v|2e−φ,

i.e., E(v) =
∫

(|∇v|2 − v2U)e−φ > 0, proving (54). Now tracing the equality case, we see that
Lg = 0 together with ∇v = v∇w for v 6= 0 give E(v) = 0. This means that

∇ log g = ∇w =
∇v
v

= ∇ log v,

i.e., we need ∇(log g − log v) = 0, which holds if and only if log v = log g + c. Thus E(v) = 0
if and only if v = cg for some c > 0. �

2.6 Gradient estimates

In this section, we present several gradient estimates for the (drift) harmonic functions and
the heat equation.
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2.6.1 L2 gradient estimates

Recall the drift Laplacian operator Lφu = ∆u−〈∇φ,∇u〉. The first estimate for the gradient
of Lφ-harmonic functions is given in terms of the L2(e−φdx) norm.

Theorem 2.17 (Reverse Poincaré inequality). If Lφu = 0, then∫
Br

|∇u|2e−φ 6 4

r2

∫
B2r

u2e−φ. (55)

Proof of Theorem 2.17. Let η > 0 be a cutoff function with compact support in B2r. Using
the inner product structure (45) in L2(e−φdx), we have

0 =

∫
Rn
η2uLφue−φ = −

∫
Rn
〈∇(η2u),∇u〉e−φ

= −2

∫
Rn
ηu〈∇η,∇u〉e−φ −

∫
Rn
η2|∇u|2e−φ.

Then we have ∫
Rn
η2|∇u|2e−φ = −2

∫
Rn
ηu〈∇η,∇u〉e−φ

6 2

∫
Rn
η|u||∇η||∇u|e−φ

6
1

2

∫
Rn
η2|∇u|2e−φ + 2

∫
Rn
u2|∇η|2e−φ,

where the last inequality follows from the absorbing inequality 2ab 6 ε−1a2 + εb2 with ε =
2, a = η|∇u|, and b = |u||∇η|. Thus we get∫

Rn
η2|∇u|2e−φ 6 4

∫
Rn
u2|∇η|2e−φ.

Choose

η =


1 on Br

linear on B2r \Br
0 on Rn \B2r

. (56)

Then |∇η| 6 r−1 and∫
Br

|∇u|2e−φ 6
∫
Rn
η2|∇u|2e−φ 6 4

∫
Rn
u2|∇η|2e−φ 6 4

r2

∫
B2r

u2e−φ.

�

2.6.2 Bochner formula

Lemma 2.18 (Bochner formula). Let u : Rn → R such that u ∈ C3(Rn). Then we have

1

2
∆|∇u|2 = |∇2u|2F + 〈∇∆u,∇u〉, (57)

where ∇2u is the Hessian of u and |∇2u|2F =
∑n

i,j=1( ∂2u
∂xi∂xj

)2 is the squared Frobenius norm

of the matrix ∇2u.
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Proof of Lemma 2.18. Compute |∇u|2 =
∑n

i=1( ∂u∂xi )
2 and

∆|∇u|2 =
n∑
i=1

n∑
j=1

∂2u

∂x2
j

(
∂u

∂xi

)2

=
n∑
i=1

n∑
j=1

∂u

∂xj

(
2
∂u

∂xi

∂2u

∂xi∂xj

)

= 2

n∑
i=1

n∑
j=1

(
∂2u

∂xi∂xj

)2

+ 2

n∑
i=1

n∑
j=1

∂u

∂xi

∂3u

∂xi∂2xj

= 2|∇2u|2F + 2
n∑
i=1

∂u

∂xi

n∑
j=1

∂u

∂xi

(
∂2u

∂2xj

)
= 2|∇2u|2F + 2〈∇u,∇∆u〉.

�

Similarly, we have the Bochner formula for the drift Laplacian.

Lemma 2.19 (Drift Bochner formula). Let φ : Rn → R and Lφu = ∆u − 〈∇φ,∇u〉. If
u ∈ C3(Rn), then we have

1

2
Lφ|∇u|2 = |∇2u|2F + 〈∇Lφu,∇u〉+∇2φ(∇u,∇u), (58)

where

∇2φ(∇u,∇v) =
n∑

i,j=1

∂2φ

∂xi∂xj

∂u

∂xi

∂v

∂xj
= (∇u)T (∇2φ)(∇v)

is a symmetric bilinear form.

Remark 2.20 (Drift Bochner formula on Riemannian manifolds). The drift Bochner formula in
Lemma 2.19 can be further generalized to the Riemannian manifold (M, g). For φ : M → R,
define Lφu = ∆u− 〈∇φ,∇u〉g. Then

1

2
Lφ|∇u|2 = |∇2u|2F + 〈∇Lφu,∇u〉g + (∇2φ+ Ricg)(∇u,∇u), (59)

where Ricg is the Ricci curvature tensor of (M, g). However, proof of (59) is based on dif-
ferential geometry, which is very different from the proof of Lemma 2.19 that is presented
below.

Proof of Lemma 2.19. By Lemma 2.18, we have

1

2
Lφ|∇u|2 =

1

2
∆|∇u|2 − 1

2
〈∇φ,∇|∇u|2〉

= |∇2u|2F + 〈∇∆u,∇u〉 − 1

2
〈∇φ,∇|∇u|2〉

= |∇2u|2F + 〈∇Lφu,∇u〉+ 〈∇〈∇φ,∇u〉,∇u〉 − 1

2
〈∇φ,∇|∇u|2〉.
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Using the chain rule, we have

∇u〈∇φ,∇v〉 := 〈∇〈∇φ,∇v〉,∇u〉 = ∇2φ(∇v,∇u) +∇2v(∇φ,∇u).

So we have

〈∇〈∇φ,∇u〉,∇u〉 = ∇2φ(∇u,∇u) +∇2u(∇φ,∇u),

〈∇φ,∇|∇u|2〉 = ∇φ〈∇u,∇u〉 = 2∇2u(∇u,∇φ).

Putting all pieces together, we get

1

2
Lφ|∇u|2 = |∇2u|2F + 〈∇Lφu,∇u〉+∇2φ(∇u,∇u) +∇2u(∇φ,∇u)−∇2u(∇u,∇φ)

= |∇2u|2F + 〈∇Lφu,∇u〉+∇2φ(∇u,∇u).

�

2.6.3 L∞ gradient estimate

The Bochner formula is useful for bounding the gradient of solutions to Lφ-harmonic functions
in terms of the L∞ norm.

Theorem 2.21 (Cacciopoli inequality: L∞ version of reverse Poincaré inequality). If Lφu = 0
such that ∇2φ > 0 (as a matrix inequality), then

sup
Br

|∇u|2 6 C(n, r) sup
B2r

|u|2, (60)

where C(n, r) is a dimensional constant that may also depend on r.

Proof of Theorem 2.21. By the drift Bochner formula in Lemma 2.19 and using Lφu = 0,∇2φ >
0, we have

1

2
Lφ|∇u|2 = |∇2u|2F + 〈∇Lφu,∇u〉+∇2φ(∇u,∇u) > |∇2u|2F .

Let η : Rn → R be the cutoff function defined in (56) with compact support in B2r. Using

Lφ(uv) = ∆(uv)− 〈∇φ,∇(uv)〉
= (∆u)v + u(∆v) + 2〈∇u,∇v〉 − 〈∇φ,∇v〉u− 〈∇φ,∇u〉v
= (Lφu)v + (Lφv)u+ 2〈∇u,∇v〉,

we have
1

2
Lφ(η2|∇u|2) =

1

2
(Lφη2)|∇u|2 +

1

2
(Lφ|∇u|2)η2 + 〈∇η2,∇|∇u|2〉.

Then,

1

2
Lφ(η2|∇u|2) >

1

2
(Lφη2)|∇u|2 + |∇2u|2F η2 + 2η〈∇η,∇|∇u|2〉

=
1

2
(Lφη2)|∇u|2 + |∇2u|2F η2 + 2η∇2u(∇u,∇η).
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Observe that

|2η∇2u(∇u,∇η)| = 2

∣∣∣∣η∇2u

(
∇u
|∇u|

,
∇η
|∇η|

)∣∣∣∣ |∇u||∇η|
6 η2

∣∣∣∣∇2u

(
∇u
|∇u|

,
∇η
|∇η|

)∣∣∣∣2 + |∇u|2|∇η|2

6 η2|∇2u|2F + |∇u|2|∇η|2.

Combining the last two displays, we get

1

2
Lφ(η2|∇u|2) >

1

2
(Lφη2)|∇u|2 − |∇u|2|∇η|2.

Let w = 1
2η

2|∇u|2 + Cu2, where C = 1
2 maxB2r |12(Lφη2)− |∇η|2| is a constant depending on

n and r. Then

Lφw >
1

2
(Lφη2)|∇u|2 − |∇u|2|∇η|2 + CLφu2

=
1

2
(Lφη2)|∇u|2 − |∇u|2|∇η|2 + 2C(uLφu+ |∇u|2)

=
1

2
(Lφη2)|∇u|2 − |∇u|2|∇η|2 + 2C|∇u|2

> 0.

Since Lφ is an elliptic operator (cf. equation (46)), by the maximum principle, w must achieve
its maximum at ∂B2r. Thus

max
B2r

w = max
∂B2r

w = C max
∂B2r

u2 6 C max
B2r

u2,

where the second equality is due to η = 0 on ∂B2r. Now using the cutoff property of η on
B2r, we deduce that

max
Br
|∇u|2 6 max

B2r

w 6 C max
B2r

u2.

�

If we look for positive harmonic functions, then better gradient estimate than Theorem 2.21
can be obtained.

Theorem 2.22 (Gradient estimate for positive harmonic functions). If u > 0 on B2r ⊂ Rn and
∆u = 0, then

sup
Br

|∇u|
u
6
C(n)

r
, (61)

where C(n) is a dimensional constant.

On one hand, Theorem 2.22 gives an (ellitpic) Harnack inequality for positive harmonic
functions on B2r.

Corollary 2.23 (Harnack inequality). If u > 0 on B2r ⊂ Rn and ∆u = 0, then

e−2C 6
u(y)

u(x)
6 e2C , ∀x, y ∈ Br. (62)
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Proof of Corollary 2.23. Let v = log u and

f(s) = v(
y − x
|y − x|

s+ x).

Then f(0) = v(x) = log u(x), f(|y − x|) = log u(y), and

f ′(s) =
〈
∇v(

y − x
|y − x|

s+ x),
y − x
|y − x|

〉
.

By the Cauchy-Schwarz inequality and Theorem 2.22, we get

|f ′(s)| 6
∣∣∣∣〈∇v(

y − x
|y − x|

s+ x),
y − x
|y − x|

〉∣∣∣∣ 6 C

r
,

where C := C(n) is a dimensional constant. Then the fundamental theorem of calculus yields

|f(|y − x|)− f(0)| 6
∫ |y−x|

0
|f ′(s)|ds 6 C

r
|y − x|,

which implies for all x, y ∈ Br, ∣∣∣∣log
u(y)

u(x)

∣∣∣∣ 6 C |y − x|r
6 2C.

This proves the Harnack inequality (62). �

On the other hand, if u > 0 is an entire harmonic function (i.e., ∆u = 0 on Rn), then u is
very rigid – in fact it has to be constant on Rn.

Corollary 2.24 (Liouville theorem). If u > 0 on Rn such that ∆u = 0, then u is constant.

Proof of Corollary 2.24. Put v = log u. From Theorem 2.22, we have

sup
Br

|∇v| 6 C(n)

r

for any r > 0. Letting r →∞, we see that ∇v = 0 everywhere, i.e., u is constant. �

Proof of Theorem 2.22. Let v = log u. We may assume that u is not constant for otherwise
the proof is trivial. Note that

∇v =
∇u
u

and ∆v =
∆u

u
− |∇u|

2

u2
= −|∇u|

2

u2
= −|∇v|2.

By the Bochner formula in Lemma 2.18 and the matrix trace inequality in Lemma 2.25,

1

2
∆|∇v|2 = |∇2v|2F + 〈∇∆v,∇v〉 = |∇2v|2F − 〈∇|∇v|2,∇v〉

>
|∆v|2

n
− 〈∇|∇v|2,∇v〉 =

|∇v|4

n
− 〈∇|∇v|2,∇v〉.
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Let η > 0 be a cutoff function defined in (56) with compact support in B2r. Then,

∆(η2|∇v|2) = η2∆|∇v|2 + |∇v|2∆η2 + 2〈∇η2,∇|∇v|2〉

> 2η2 |∇v|4

n
− 2η2〈∇|∇v|2,∇v〉+ |∇v|2∆η2 + 2〈∇η2,∇|∇v|2〉.

Note that η2|∇v|2 vanishes on the boundary ∂B2r (because u is not constant), its maximum
must be achieved in the interior of B2r, i.e., η2|∇v|2 > 0 at the maximum. Thus, at the
maximum, we have η > 0, ∇(η2|∇v|2) = 0, and

0 > ∆(η2|∇v|2) >
2η2

n
|∇v|4 − 2η2〈∇|∇v|2,∇v〉+ |∇v|2∆η2 + 4η〈∇η,∇|∇v|2〉.

Since ∇(η2|∇v|2) = 0 implies η2∇|∇v|2 = −2η∇η|∇v|2 at the maximum, the last display
becomes

0 > ∆(η2|∇v|2) >
2η2

n
|∇v|4 + 4η|∇v|2〈∇η,∇v〉+ |∇v|2∆η2 − 8|∇v|2|∇η|2.

Dividing |∇v|2 on both sides and noting that ∆η2 = div(2η∇η) = 2|∇η|2 + 2η∆η = 2|∇η|2
because η is a piecewise linear cutoff function, we get

0 >
2η2

n
|∇v|2 + 4η〈∇η,∇v〉+ ∆η2 − 8|∇η|2

>
2η2

n
|∇v|2 − 4η|∇η||∇v|+ ∆η2 − 8|∇η|2

=
2η2

n
|∇v|2 − 4η|∇η||∇v| − 6|∇η|2.

With a = η|∇v|, we can write the last inequality as

0 >
2

n
a2 − 4|∇η|a− 6|∇η|2.

Solving this quadratic inequality for a and , we get

a2 6 c
|∇η|2 + n−1|∇η|2

n−2
at the maximum of η|∇v| on B2r,

where c is a universal constant. Then we obtain that

sup
Br

|∇u|
u

= sup
Br

|∇v| 6 sup
B2r

η|∇v| 6 C(n)|∇η| 6 C(n)

r
.

�

Lemma 2.25 (Matrix trace inequality). Let A be an n× n matrix. Then,

|A|2F >
tr2(A)

n
. (63)

Proof of Lemma 2.25. Inequality (63) follows from

tr(A) = tr(AIn) 6
√

tr(ATA)
√

tr(I2
n) =

√
n|A|F ,

where we used the Cauchy-Schwarz inequality. �
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2.6.4 Harnack inequalities

In this section, we derive gradient estimates for the heat equation. The following (parabolic)
Harnack inequality allows one to compare the heat equation solution at two different time
slices.

Theorem 2.26 (Harnack inequality for heat equation). Suppose u(x, t) > 0 solves the heat
equation (∂t −∆)u = 0 on Rn × R+. For (x1, t1) and (x2, t2) such that t2 > t1 > 0, we have

u(x2, t2) > u(x1, t1)

(
t1
t2

)n/2
exp

(
−|x2 − x1|2

4(t2 − t1)

)
. (64)

A key ingredient in proving the Harnack inequality in Theorem 2.26 is the following
differential Harnack inequality.

Theorem 2.27 (Differential Harnack inequality for heat equation). Suppose u : Rn×[0, T ]→ R
satisfying u(x, t) > 0 and (∂t −∆)u = 0 on Rn × [0, T ]. Then we have

|∇u|2

u2
(x, t)− ut

u
(x, t) 6

n

2t
. (65)

Remark 2.28. The differential Harnack inequality (65) is a sharp global gradient estimate
for the heat equation solution. Consider the fundamental solution of the heat equation on
Rn × R+, which is given by

u(x, t) = (4πt)−n/2 exp

(
−|x|

2

4t

)
.

Then

v := log u = −n
2

log(4πt)− |x|
2

4t
,

vt = − n
2t

+
|x|2

4t2
, |∇v| = − x

2t
, |∇v|2 =

|x|2

4t2
.

So we have
|∇u|2

u2
− ut
u

= |∇v|2 − vt =
|x|2

4t2
+
n

2t
− |x|

2

4t2
=
n

2t
.

�

Proof of Theorem 2.26. Let v = log u and

f(s) = v(x2 +
x1 − x2

t2 − t1
s, t2 − s).

Then f(0) = v(x2, t2), f(t2 − t1) = v(x1, t1), and

f ′(s) =
〈
∇v(x2 +

x1 − x2

t2 − t1
s, t2 − s),

x1 − x2

t2 − t1

〉
− vt(x2 +

x1 − x2

t2 − t1
s, t2 − s).

Using the absorbing inequality 2ab 6 ε2 + ε−1b2 with ε = 2, a = ∇v, b = |x1−x2|
t2−t1 , we get

f ′(s) 6 |∇v| |x1 − x2|
t2 − t1

− vt 6 |∇v|2 +
|x1 − x2|2

4(t2 − t1)2
− vt.
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Applying the differential Harnack inequality in Theorem 2.27 at the spacetime point (x2 +
x1−x2
t2−t1 s, t2 − s), we have

|∇v|2 − vt =
|∇u|2

u2
− ut
u
6
n

2

1

t2 − s
.

Combining the last two displays, we have

f ′(s) 6
|x1 − x2|2

4(t2 − t1)2
+
n

2

1

t2 − s
.

Now using the fundamental theorem of calculus, we get

f(t2 − t1)− f(0) =

∫ t2−t1

0
f ′(s) ds

6
∫ t2−t1

0

[
|x1 − x2|2

4(t2 − t1)2
+
n

2

1

t2 − s

]
ds =

|x1 − x2|2

4(t2 − t1)
+
n

2
log

(
t2
t1

)
.

This means that

log

(
u(x1, t1)

u(x2, t2)

)
6 log

[(
t2
t1

)
exp

(
|x1 − x2|2

4(t2 − t1)

)]
,

which is the same as

u(x2, t2)

u(x1, t1)
>

(
t1
t2

)
exp

(
−|x1 − x2|2

4(t2 − t1)

)
, ∀ t2 > t1 > 0.

�

Proof of Theorem 2.27. Let v = log u. Note that

∇v =
∇u
u
, ∆v =

∆u

u
− |∇u|

2

u2
, vt =

ut
u
,

so that

(∂t −∆)v =
ut
u
− ∆u

u
+
|∇u|2

u2
=
|∇u|2

u2
= |∇v|2.

Define

F (x, t) = t

[
|∇u|2

u2
(x, t)− ut

u
(x, t)

]
= t[|∇v|2 − vt] = −t|∇v|2.

We claim that:

(∂t −∆)F 6
F

t
+ 2〈∇F,∇v〉 − 2

nt
F 2. (66)

Given the claim, our goal is to show F 6 n/2. Assume that F achieves its maximum on
Rn × [0, T ]. Without loss of generality, we may assume the maximum is positive because
F (x, 0) = 0. Then at the maximum, we have

∇F = 0, ∂tF > 0, ∆F 6 0.

Using the claim, we have

0 6 (∂t −∆)F 6
F

t
− 2

nt
F 2 at the maximum.
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This gives F 6 n/2. It remains to prove the claim (66). Using the chain rule and the Bochner
formula in Lemma 2.18, we compute

1

2
(∂t −∆)|∇v|2 = 〈∇v,∇vt〉 −

1

2
∆|∇v|2

= 〈∇v,∇vt〉 − |∇2v|2F − 〈∇∆v,∇v〉
= −|∇2v|2F + 〈∇(∂t −∆)v,∇v〉
= −|∇2v|2F + 〈∇|∇v|2,∇v〉

and
(∂t −∆)vt = ((∂t −∆)v)t = (|∇v|2)t = 2〈∇v,∇vt〉.

Then we have

(∂t −∆)F = (|∇v|2 − vt) + t(∂t −∆)(|∇v|2 − vt)

=
F

t
+ t
[
−2|∇2v|2F + 2〈∇|∇v|2,∇v〉 − 2〈∇v,∇vt〉

]
=

F

t
+ 2t

[
−|∇2v|2F + 〈∇(|∇v|2 − vt),∇v〉

]
=

F

t
+ 2t

[
−|∇2v|2F + 〈∇F

t
,∇v〉

]
=

F

t
− 2t|∇2v|2F + 2〈∇F,∇v〉.

Now using the matrix trace inequality in Lemma 2.25, we have

|∇2v|2F >
|∆v|2

n
=

1

n

(
−F
t

)2

=
F 2

nt2
,

where the second equality follows from ∆v = ∂tv − |∇v|2 = −F/t. Combining the last two
displays, we get

(∂t −∆)F 6
F

t
− 2F 2

nt
+ 2〈∇F,∇v〉.

This proves the claim (66). �

3 Continuity equation

Let Ω ⊂ Rn be a spatial domain. Consider the continuity equation (CE):

∂tµt + div(µtvt) = 0, (67)

where µt is a probability measure (typically absolutely continuous with a density) on Ω,
vt : Ω→ Rn is a velocity vector field on Ω, and ∇ · v is the divergence of a vector field v.

There are several meanings of solving the continuity equation (67). Given the vector field
vt, we can speak of a classical (or strong) solution as a partial differential equation (PDE)
by thinking µt(x) as a differentiable function of two variables x and t. We can also think of
a distributional solution by integrating against some “nice” class of test functions on (x, t). If

26



the continuity equation (67) is satisfied, then, for any finite time point T > 0, we can integrate
with a C1 function ψ : Ω× [0, T ]→ R with bounded support and apply integration-by-parts:

0 =

∫ T

0

∫
Ω
ψ∂tµt +

∫ T

0

∫
Ω
ψdiv(µtvt) (68)

= −
∫ T

0

∫
Ω

(∂tψ)µt −
∫ T

0

∫
Ω
〈∇ψ,vt〉µt, (69)

where there is no contribution from the boundary because ψ has compact support so that the
divergence theorem works. Here we implicitly assumed that the first law of thermodynamics
holds (i.e., mass conservation of µt) so that there is no mass escapes at the boundary (if Ω
is bounded) or near the infinity (if Ω is not bounded). Compared with the strong solution,
the distribution solution (69) does not require differentiability by moving the derivative from
µt(x) to ψ(x, t).

Suppose further we can interchange ∂t and
∫

Ω in the first integral of (68) and we keep the
second integral in (69), then we can take a smaller class of test functions only in the spatial
domain Ω such that the solution space is larger. Why shouldn’t we interchange ∂t and

∫
Ω in

the first integral of (69)? This is because if we take test functions depending only on Ω, then
it does not make sense to take the time derivative as in (69), which always equals to zero.

Let φ : Ω → R be such C1 test function with bounded support. To make sense of
differentiation outside of integration, we obviously need t 7→

∫
Ω φµt is absolutely continuous

in t. In addition, we need the identity

d

dt

∫
Ω
φµt −

∫
Ω
〈∇φ,vt〉µt = 0 (70)

to hold pointwise (in t) such that (69) equals to zero. This motivates the following definition.

Definition 3.1 (Weak solution of the continuity equation). We say that the density µt is a
weak solution in the distribution sense if for any C1 test function φ : Ω → R with bounded
support, the function t 7→

∫
Ω φµt is absolutely continuous in t, and for each a.e. t, we have

d

dt

∫
Ω
φµt =

∫
Ω
〈∇φ,vt〉µt. (71)

In these notes, we make (more) sense of dynamic behaviors of the continuity equation,
and illustration its links to the classical PDEs, probabilities (such as Markov processes and
stochastic differential equations), and the trajectory analysis (such as gradient flows). Specif-
ically, we would like to understand the question that how does the weak solution of the
continuity equation in an infinite-dimensional metric space (typically Wasserstein) connect
with the classical solution of PDEs in a finite-dimensional space (typically Euclidean space
and time)? We start from the (linear) heat equation as a concrete example.

3.1 Metric derivative in Wasserstein space

Let p > 1 and Pp(Rn) be the collection of probability measures on Rn such that the p-
Wasserstein distance is well-defined, i.e.,

Pp(Rn) =
{
µ ∈ P(Rn) :

∫
Rn
|x− x0|pµ(dx) <∞ for some x0 ∈ Rn

}
, (72)
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where P(Rn) contains all probability measures on Rn. Let Wp be the p-Wasserstein distance

W p
p (µ, ν) = min

{∫
|x− y|pγ(dx,dy) : γ ∈ Γ

}
, (73)

where Γ is the set of all couplings with marginal distributions µ and ν, i.e.,
∫
γ(·,dy) = µ(·)

and
∫
γ(dx, ·) = ν(·) for γ ∈ Γ.

Remark 3.2. The space (Pp(Rn),Wp) is a metric space. �

Definition 3.3 (Absolutely continuous curve). A curve ω : [0, 1]→ X, where (X, d) is a metric
space is absolutely continuous if there exists a g ∈ L1([0, 1]) such that for any t0 < t1,

d(ω(t0), ω(t1)) 6
∫ t1

t0

g(τ) dτ. (74)

Such curves are denoted by AC(X).

Definition 3.4 (Metric derivative). Let (µt)t>0 be an absolutely continuous curve in the
Wasserstein (metric) space (Pp(Rn),Wp). The metric derivative at time t of the curve t 7→ µt
w.r.t. Wp is defined as

|µ′|p(t) = lim
h→0

Wp(µt+h, µt)

|h|
. (75)

We write |µ′|(t) = |µ′|2(t).

Remark 3.5 (Absolute continuous curves can be reparameterized to be 1-Lipschitz continuous).
For any ω ∈ AC(X), it can be reparameterized in time to become Lipschitz continuous. Let
G(t) =

∫ t
0 g(τ) dτ and S(t) = εt+G(t) for 0 < ε < 1. It is easy to see that S(t) is continuous

and strictly increasing in t ∈ [0, L]. Define ω̃(t) = w(S−1(t)) for t ∈ [0, L]. Then for any
0 6 t1 < t2 6 L, we have

d(ω̃(t1), ω̃(t2)) = d(w(S−1(t1)), w(S−1(t2)))

6
∫ S−1(t2)

S−1(t1)
g(τ) dτ = G(S−1(t2))−G(S−1(t1))

= S(S−1(t2))− εS−1(t2)− S(S−1(t1)) + εS−1(t2)

= |t2 − t1| − ε(S−1(t2)− S−1(t1)) 6 |t2 − t1|.

Thus ω̃ is a 1-Lipschitz function in [0, L]. Now let ε ↓ 0, we see that each ω ∈ AC(X) can be
reparameterized to be 1-Lipschitz continuous. �

Theorem 3.6 (Rademacher). If ω : [0, 1]→ X is Lipschitz continuous, then the metric deriva-
tive |ω′|(t) exists for almost everywhere t ∈ [0, 1]. In addition, for any 0 6 t < s 6 1, we have

d(ω(t), ω(s)) 6
∫ s

t
|ω′|(τ) dτ. (76)

3.2 Heat equation revisited

Recall that the heat equation on Rn is defined as:

(∂t −∆)u = ∂tu− div(∇u) = 0, (77)
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where u : Rn × R+ → R and u(x, t) is a two-variable function of space and time. The
fundamental solution of the heat equation (77) is given by

u(x, t) = H(x, 0, t), (78)

where H(x, y, t) is the heat kernel (sometimes also called Green’s function):

H(x, y, t) = (4πt)−n/2 exp
(
− |x− y|

2

4t

)
, y ∈ Rn, t > 0. (79)

The classical solution u is just a (positive) function of two variables x and t. One can think
of H(x, y, t) is the transition density from x to y in time 2t.

Let Ω = Rn and µt(x) = u(x, t). Clearly µt > 0 is the probability density of a Gaussian
distribution N(y, 2tIn) and the continuity equation (67) reads

∂tµt − div(µt
∇µt
µt

) = 0. (80)

In this case, the velocity vector field is given by

vt(x) = −∇µt
µt

(x) = −∇u
u

(x, t), (81)

where the last equality is justified by the equivalence of weak solution and the classical PDE
solution (because u(·, ·) is Lipschitz continuous and vt(·) is Lipschitz). Since

∇u = (4πt)−n/2 exp
(
− |x− y|

2

4t

)(
− x

2t

)
= −u

(In
2t

)
x = −uvt(x), (82)

the velocity vector field vt : Rn → Rn is a linear map that can be represented by an n × n
matrix:

vt =
In
2t
. (83)

Thus in the heat equation, the velocity vector field vt = (2t)−1In does not depend on the
location x (i.e., location-free) and it dies off as t→∞. The vanishing velocity means that the
particles moving according to the heat equation will eventually converge to an equilibrium
distribution given by a harmonic function ∆u = 0. If the boundary value is imposed (either
Dirichlet problem or Neumann problem) or the heat growth at infinity is not too fast, then
the solution of the harmonic function is unique.

We can compute the metric derivative of the fundamental solution curve of the heat
equation. Note that µt is the Gaussian density N(y, 2tIn) for each t > 0.

Lemma 3.7 (Wasserstein distance between two Gaussians, cf. Remark 2.31 in [11]). Let
µ1 = N(m1,Σ1) and µ2 = N(m2,Σ2). Then the optimal transport map (i.e., the Monge
map) from µ1 to µ2 is given by

T (x) = m2 +A(x−m1), (84)

where
A = Σ

−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 , (85)
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and the squared 2-Wasserstein distance between µ1 and µ2 equals to

W 2
2 (µ1, µ2) = |m1 −m2|2 + tr

{
Σ1 + Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

}
, (86)

where the last term is the Bures distance on positive-semidefinite matrices. In particular, if
Σ1Σ2 = Σ2Σ1, then

W 2
2 (µ1, µ2) = |m1 −m2|2 + |Σ1/2

1 − Σ
1/2
2 |

2
F . (87)

In the Gaussian case, we have

W 2
2 (µt+h, µt) = |

√
2(t+ h)In −

√
2tIn|2F = 2n(

√
t+ h−

√
t)2, (88)

which gives a formulas for |µ′|(t) :

|µ′|(t) = lim
h→0

√
2n
∣∣∣√t+ h−

√
t

h

∣∣∣ =
√

2n
1

2
√
t

=

√
n

2t
. (89)

On the other hand, recalling (83), we get

‖vt‖2L2(µt)
:=

∫
|vt(x)|2µt(dx) =

1

4t2

∫
|x|2µt(dx) =

tr(2tIn)

4t2
=
n

2t
. (90)

This implies that

|µ′|(t) = ‖vt‖L2(µt) =

√
n

2t
. (91)

Equivalence in (91) is a much more general fact.

Theorem 3.8 (Equivalence between metric derivative and velocity vector field). Let p > 1 and
Ω ⊂ Rn is compact.
Part 1. If (µt)t∈[0,1] is an AC curve in Wp(Ω), then for any t ∈ [0, 1] a.e., there is a velocity
vector field vt ∈ Lp(µt; Ω) such that:

1. µt is a weak solution of the continuity equation ∂tµt + div(µtvt) = 0 in the sense of
distribution;

2. for a.e. t, we have ‖vt‖Lp(µt) 6 |µ′|p(t), where ‖vt‖Lp(µt) = (
∫

Ω |vt|
p dµt)

1/p.

Part 2. Conversely, if (µt)t∈[0,1] are measures in Pp(Ω) and vt ∈ Lp(µt; Ω) for each t such that∫ 1
0 ‖vt‖Lp(µt)dt <∞ solve the continuity equation ∂tµt + div(µtvt) = 0, then

1. (µt)t∈[0,1] is an AC curve in Wp(Ω);

2. for a.e. t, we have |µ′|p(t) 6 ‖vt‖Lp(µt).

Corollary 3.9. Let p > 1. If (µt)t∈[0,1] is an AC curve in Wp, then the velocity vector field
given in part 1 of Theorem 3.8 must satisfy

|µ′|p(t) = ‖vt‖Lp(µt). (92)
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Corollary 3.9 is an immediate consequence by applying Theorem 3.8. Alternatively we
also provide below a simple and direct heuristic optimal transport argument for Corollary 3.9.
Since (µt)t∈[0,1] is AC curve in Wp, there is an optimal transport map T : Ω → Ω, moving
mass from µt to µt+h that minimizes the cost functional∫

|x− y|p dγ subject to γ(·, dy) = µt(·), γ(dx, ·) = µt+h(·).

This implies that

W p
p (µt, µt+h) =

∫
|x− T (x)|p dµt(x) =

∫
|(T − id)(x)|p dµt(x),

where T − id is the displacement map. Then the discretized velocity of mass movement at
location x and time t is given by

vt(x) =
T (x)− x

h
.

Combining the last displays, we get

‖vt‖pLp(µt)
=

∫
|vt(x)|p dµt(x) =

∫ ∣∣∣∣T (x)− x
h

∣∣∣∣p dµt(x) =
W p
p (µt, µt+h)

|h|p
.

Letting h→ 0, we have

|µ′|(t) = lim
h→0

Wp(µt, µt+h)

|h|
= ‖vt‖Lp(µt).

Moreover, the above argument suggests consider the following dynamics for the particle
(or mass) trajectory in Rn (i.e., the Lagrangian coordinates to “follow” the particle along the
flow): {

y′x(t) = vt(yx(t)),
yx(0) = x,

(93)

where yx(t) is the time t position of the particle initially at yx(0) = x, i.e., it is the trajectory
of the particle starting from x. For the heat equation, (93) reads:

y′x(t) = (2t)−1yx(t) (94)

with the initial datum yx(0) = x. This is a first-order linear (homogeneous) ordinary differ-
ential equation with initial value problem.

Let µt be the evolution of the induced probability distributions of the mass by the trajec-
tory dynamics (93). We need to check that (vt, µt) solves the continuity equation (67) in the
weak sense (cf. Definition 3.1).

Let Yt : Ω → Ω be the flow of the vector field vt on Ω defined through Yt(x) = yx(t)
in (93). Note that Yt is indeed a flow on Ω since Y0(x) = yx(0) = x and Yt(Ys(x)) =
Yt(yx(s)) = yyx(s)(t) = yx(s+ t) = Ys+t(x) for any s, t > 0, so that Yt on Ω is a group action
of additive group on R+ = [0,∞).

Let µt = (Yt)]µ0 be the pushforward measure of µ0 by Yt, i.e., for any B ⊂ Ω measurable,

µt(B) := ((Yt)]µ0)(B) = µ0(Y −1
t (B)),
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or equivalently, for any measurable function φ on Ω, the change of variables formula holds:∫
φ d(Yt)]µ0 =

∫
(φ ◦ Yt) dµ0.

Then (µt,vt) is a weak solution of the continuity equation ∂tµt+div(µtvt) = 0 in (67) because
for any C1 test function φ : Ω→ R with bounded support,

d

dt

∫
φ dµt =

d

dt

∫
φ d(Yt)]µ0 =

d

dt

∫
(φ ◦ Yt) dµ0 =

d

dt

∫
φ(yx(t)) dµ0(x)

=

∫
〈∇φ(yx(t)), y′x(t)〉dµ0(x) =

∫
〈∇φ(yx(t)),vt(yx(t))〉 dµ0(x)

=

∫
〈∇φ(Yt),vt(Yt)〉 dµ0 =

∫
〈∇φ,vt〉 d(Yt)]µ0 =

∫
〈∇φ,vt〉dµt.

3.3 Wasserstein gradient flow

We have seen from Section 2.1 that the heat equation is the (negative) gradient flow of moving
particles in Rn. In this section, we show that the heat equation can also viewed as a gradient
flow of the entropy in the Wasserstein space of probability measures. To do this, we need first
to make sense what do we mean by a “derivative” of the entropy (or more general functionals)
in terms of a density in the infinite-dimensional Wasserstein (or metric) space.

3.3.1 First variation

Definition 3.10 (First variation, Chapter 7 in [12]). Let ρ be a density on Ω. Given a functional
F : P(Ω) → R, we call δF

δρ (ρ) : P(Ω) → R, if it exists, the unique (up to additive constants)
measurable function such that

d

dh

∣∣∣
h=0

F (ρ+ hχ) = lim
h→0

∣∣∣F (ρ+ hχ)− F (ρ)

h

∣∣∣ =

∫
δF

δρ
(ρ) dχ (95)

holds for every mean-zero perturbation density χ such that ρ+hχ ∈ P(Ω) for all small enough
h. The function δF

δρ (ρ) : Ω→ R is the first variation of F at ρ.

In Rn, the first variation behaves like the directional derivatives projected to all possible
directions χ ∈ Rn. For example, take F (x) = 1

2 |x|
2 for x ∈ Rn. Then ∇F (x) = x and for any

y ∈ Rn,

lim
h→0

∣∣∣ |x+ hy|2 − |x|2

2h

∣∣∣ = lim
h→0

∣∣∣〈x, y〉+
h

2
|y|2
∣∣∣ = 〈x, y〉 = 〈∇F (x), y〉. (96)

Comparing (95) with (96), we may interpret∫
δF

δρ
(ρ) dχ =

〈δF
δρ

(ρ), χ
〉

(97)

as an inner product in a Hilbert space. Thus first variation is an infinite-dimensional analog
of the gradient in the finite-dimensional Euclidean space. Thus δF

δρ (ρ) can be viewed as a
gradient in P(Ω).

Note that first variation is defined only up to additive constants since
∫
cdχ = 0 for any

constant c ∈ R. Below are two important functionals that will be extremely useful in studying
heat equation, or more generally the Fokker-Planck equation in Section ??.
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Example 3.11 (“Generalized” entropy). Let f : R→ R be a convex superlinear function and

F (ρ) =

∫
f(ρ(x)) dx =

∫
f ◦ ρ. (98)

Clearly
F (ρ+ hχ)− F (ρ)

h
=

∫
f(ρ(x) + hχ(x))− f(ρ(x))

hχ(x)
χ(x) dx.

Letting h→ 0, we get

d

dh

∣∣∣
h=0

F (ρ+ hχ) =

∫
f ′(ρ(x))χ(x) dx =

∫
f ′(ρ) dχ, (99)

which implies that
δF

δρ
(ρ) = f ′(ρ). (100)

For the special case where f(ρ) = ρ log ρ is the entropy, it first variation at ρ is given by

δF

δρ
(ρ) = 1 + log ρ. (101)

Example 3.12 (Potential). Let V : Ω→ R be a potential function and the energy functional

F (ρ) =

∫
V dρ =

∫
V (x)ρ(x) dx. (102)

Compute

F (ρ+ hχ)− F (ρ)

h
=

∫
V (x)

ρ(x) + hχ(x)− ρ(x)

h
dx =

∫
V (x)χ(x) dx =

∫
V dχ.

Thus we see that
δF

δρ
(ρ) = V (103)

is a constant function that does not depend on ρ.

Intuitively, the first variation of a functional F (either entropy or energy) at ρ is the rate of
change in distribution for moving the particles on Ω from ρ that minimizes the entropy/energy.

3.3.2 Minimizing movement scheme

Given a functional F : P(Ω) → R, the minimizing movement scheme introduced by Jordan-
Kinderlehrer-Otto [6] (sometimes also called the JKO scheme) is a time-discretized version
of gradient flows that solves a sequence of iterated minimization problems (in the context of
(P(Ω),W2)):

ρhk+1 = argminρ∈P(Ω) F (ρ) +
W 2

2 (ρ, ρhk)

2h
. (104)

By strong duality,

W 2
2 (ρ, ρhk) = max

ϕ∈Φc(Ω)

∫
Ω
ϕdρ+

∫
Ω
ϕc dρhk , (105)
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where ϕc(y) = infx∈Ω{|x − y|2 − ϕ(x)} is the c-transform1. The functions ϕ realizing the
maximum on the right hand side of (105) is called the Kantorovich potentials for the transport
from ρ to ρhk . For each ρhk , W 2

2 (ρ, ρhk) is convex in ρ since it is a supremum of linear functionals
in ρ.

Now differentiating (104) w.r.t. ρ, the first-order optimality condition is implied by

δF

δρ
(ρhk+1) +

ϕ

h
= constant, (106)

where ϕ now is the Kantorovich potential for the transport from ρhk+1 to ρhk (not in the reversed
direction). Here we implicitly assumed the uniqueness of c-concave Kantorovich potential.

From Brenier’s polarization theorem, we know that optimal map T̃ from µt+h and µt to
and ϕ : Ω→ R are linked through

T̃ (x) = x−∇ϕ(x). (107)

So the velocity vector from time t+ h to t (note the reverse direction!) is given by

ṽt =
T̃ (x)− x

h
= −∇ϕ(x)

h
= ∇

(δF
δρ

(ρhk+1)
)

(x). (108)

Reverting the time direction (vt = −ṽt) and letting h→ 0 (using the continuity of ρ), we get

vt(x) = −∇
(δF
δρ

(ρ)
)

(x) (109)

and we get the following continuity equation

∂tρ− div
(
ρ∇
(δF
δρ

(ρ)
))

= 0 (110)

in the Wasserstein space of measures.
If we choose the entropy functional F (ρ) =

∫
f(ρ(x)) dx with f(ρ) = ρ log ρ, then

δF

δρ
(ρ) = 1 + log ρ, and ∇

(δF
δρ

(ρ)
)

=
∇ρ
ρ

= ∇ log ρ, (111)

so that the continuity equation in (110) reads

∂tρ− div(ρ∇ log ρ) = 0. (112)

Now recall that we can rewrite the heat equation as:

0 = (∂t −∆)u = ∂tu− div(u
∇u
u

) = ∂tu− div(u∇ log u), (113)

where we can think of µt = u(·, t) and vt = ∇ log u in the continuity equation (67). Thus
we see that (112) and (113) are really the same continuity equation associated with the heat
equation. However, they are viewed as different gradient flows in the spaces (P2(Ω),W2) and
Ω, respectively. In either case, we call it the heat flow.

1Here c stands for a general cost function and the c-transform in general is defined as ϕc(y) = infx∈Ω{c(x, y)−
ϕ(x)}. A function ϕ is said to be c-concave if there exists a χ such that ϕ = χc and Φc(Ω) is the set of all
c-concave functions.
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3.4 Fokker-Planck equation

The Fokker-Planck equation is a diffusion with a drift term, i.e., it is a diffusive PDE with
the drift Laplacian. As in the heat equation, we can take two alternative perspectives on the
continuity equation structure and the gradient flow in the spaces (P2(Ω),W2) and Ω.

First, if we choose the functional

F (ρ) =

∫
f(ρ(x)) dx+

∫
V (x) dρ(x) =

∫
f ◦ ρ+

∫
V dρ, (114)

where f(ρ) = ρ log ρ is the entropy and V : Ω→ R is a potential (independent of ρ), then the
first variation of F at ρ is given by

δF

δρ
(ρ) = 1 + log ρ+ V. (115)

Thus,

∇
(δF
δρ

(ρ)
)

= ∇ log ρ+∇V =
∇ρ
ρ

+∇V, (116)

and the continuity equation for this entropy+potential functional F (note that F is convex
in ρ) becomes

0 = ∂tρ− div
(
ρ
(∇ρ
ρ

+∇V
))

= ∂tρ−∆ρ− div(ρ∇V ), (117)

or alternatively, we may write

∂tρ = ∆ρ− 〈∇ρ,∇V 〉 − ρ∆V, (118)

which is the Fokker-Planck equation (FPE). Hence with the drift Laplacian operator LV :

LV ρ = ∆ρ+ 〈∇ρ,∇V 〉 = eV div(e−V∇ρ), (119)

the Fokker-Planck equation (118) is nothing but the drift heat equation:

∂tρ− LV ρ− ρ∆V = 0, (120)

which describes the time evolution of density of particles under the influence of drag forces
and random forces (such as in Brownian motion or heat diffusion in the pure diffusion case.)

Note that the special case when V (x) = 1
4 |x|

2, then ∇V = x
2 ,∆V = n

2 and the drift heat
equation (120) is the Mehler flow:

(∂t − LM )u = 0,

where LM is the Mehler operator defined as

LM (ρ) = L |x|2
4

(ρ) +
n

2
ρ.

Recall we have seen from Section 2.5.2 that

d

dt
Et(f) = −2〈ft, LMf〉M = −2Et(f), (121)
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where 〈f, g〉M =
∫
Rn f(x)g(x)e

|x|2
4 dx defines an inner product, we see that LM is the twice

negative gradient flow of the Mehler energy (52) in Rn. Note that (121) implies that the
exponential rate of convergence for the Mehler flow (i.e., the Fokker-Planck equation with
V (x) = 1

4 |x|
2) in the Euclidean space Rn: for t > 0,

Et(f) = E0(f)e−2t. (122)

In Section ?? below, we shall also look at the rate of convergence of the gradient flow of
the Fokker-Planck equation (in particular the Mehler flow) to v in the Wasserstein space
(P2(Rn),W2).

For a general potential V , from the continuity equation (117), the velocity vector field vt
is given by

vt = −∇ρt
ρt
−∇V. (123)

Thus we can write down the gradient flow of vt as in (93). In particular, the Mehler flow
(with the potential V (x) = 1

4 |x|
2) is given by

y′x(t) = −
(∇ρt
ρt

+∇V
)

(yx(t)) = −
(∇ρt
ρt

)
(yx(t))− yx(t)

2
(124)

with the initial datum yx(0) = x, which again is a first-order linear (homogeneous) ordinary
differential equation with initial value problem.

3.5 Langevin diffusion

The Fokker-Planck equation is a PDE that describes the time evolution of density of particles
of a diffusion process with a (deterministic) drift and (random) noise, which is governed
by the following stochastic differential equation (SDE) (sometimes referred as the Langevin
diffusion):

dXt = m(Xt, t) dt+ σ(Xt, t) dWt, (125)

where m(Xt, t) is the drift coefficient vector in Rn and σ(Xt, t) is an n×n matrix. Here (Wt)
is again the standard Brownian motion on Rn. The SDE in (125) is understood in the integral
form:

Xt+s −Xs =

∫ s+t

s
m(Xu, u) du+

∫ s+t

s
σ(Xu, u) dWu (126)

as a sum of an Lebesgue integral and an Itô integral. In this model, both the random drift
coefficient vector m(Xt, t) and the random matrix σ(Xt, t) are path/state and time dependent.

The (standard) n-dimensional Brownian motion is the special case where m(Xt, t) = 0
and σ(Xt, t) = In. For n = 1, the density evolution equation of (125) is given by

∂tρ(x, t) = −∂x(m(x, t)ρ(x, t)) + ∂2
x(D(x, t)ρ(x, t)), (127)

where D(Xt, t) = σ(Xt, t)
2/2 is the diffusion coefficient. In Section 3.5.1, we show how to

convert the SDE of sample paths (125) (i.e., Langevin dynamics) to the evolution PDE of
densities (127) (i.e., Fokker-Planck equation). In the one-dimensional heat diffusion case
(where there is no drift m(x, t) = 0) with D(Xt, t) = 1 (i.e., σ(Xt, t) =

√
2), the evolution of

the density ρ(x, t) is governed by
∂tρ− ∂2

xρ = 0, (128)
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which is just the heat equation on R. Higher dimension analog ∂tu − ∆u = 0 can also be
made by noting that the density evolution equation now becomes

∂tρ(x, t) = −div(m(x, t)ρ(x, t)) +
n∑

i,j=1

∂2

∂xi∂xj
(Dij(x, t)ρ(x, t)), (129)

where D(x, t) = σ(x, t)σ(x, t)T /2 is the diffusion tensor.
How does the density evolution equation (129) link to the continuity equation version (117)

and (118)? With the diffusion tensor D(x, t) = In, (129) reads

∂tρ = −div(mρ) + ∆ρ. (130)

Comparing the last display with the continuity equation (117):

∂tρ−∆ρ− div(ρ∇V ) = 0, (131)

we see that
m = −∇V, (132)

which means that the mean drift vector m in the Fokker-Planck equation proceeds in the neg-
ative gradient direction of minimizing the potential V (and of course subject to the diffusion
effect given by the Laplacian ∆). Combining this with the fact that the heat flow proceeds
in the negative gradient direction in the entropy, we see that the Fokker-Planck equation is
the negative gradient flow of the entropy+potential functional

F (ρ) =

∫
f ◦ ρ︸ ︷︷ ︸

microscopic behavior

+

∫
V dρ︸ ︷︷ ︸

macroscopic behavior

(133)

in the Wasserstein space (P2(Ω),W2).
We remark that in the special case m(x, t) = −x

2 (i.e., V (x) = 1
4 |x|

2) and D(x, t) = 1 in
the Langevin diffusion (125) is often called the Ornstein-Uhlenbeck (OU) process in Rn:

dXt = −Xt

2
dt+

√
2 dWt, (134)

which is simply a mean-reverting diffusion process. The semi-group operator of the OU process
is given by

Ptf(x) = Eξ∼π

[
f
(
e−t

x

2
+
√

1− e−2tξ
)]
, t > 0, (135)

where π is again
√

2-scaled standard Gaussian measure γ on Rn, i.e., π(x) = (4π)−n/2 exp(−|x|2/4).
The OU semi-group (Pt)t>0 admits π as stationary measure, where the convergence holds in
L2(π): for any bounded measurable function f : Rn → R,

‖Ptf − πf‖2L2(π) = Eξ′∼π

∣∣∣Eξ∼π[f(e−t
ξ′

2
+
√

1− e−2tξ)]− Eξ∼π[f(ξ)]
∣∣∣2

6 Eξ′∼π Eξ∼π

[
f(e−t

ξ′

2
+
√

1− e−2tξ)− f(ξ)
]2

(136)

= E
[
f(e−t

ξ′

2
+
√

1− e−2tξ)− f(ξ)
]2

(137)

→ 0, as t→∞, (138)
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where (136) follows from Jensen’s inequality, (137) from Fubini’s theorem, and (138) from the
dominated convergence theorem (since f ∈ L2(π)). In addition, the generator A of (Pt)t>0 is
given by

Af =
d

dt

∣∣∣
t=0

Ptf = −1

2
〈∇f, x〉+ ∆f, (139)

which is called the Ornstein-Uhlenbeck (OU) operator (also write A = LOU ). Compar-
ing (139) with the Mehler operator in (??):

LM (ρ) = L |x|2
4

(ρ) +
n

2
ρ = ∆ρ+

1

2
〈∇ρ, x〉+

n

2
ρ, (140)

which gives the forward Fokker-Planck equation (cf. Appendix ?? for more details), the
generator in (139) gives the backward Fokker-Planck equation. Integrating-by-parts w.r.t.
dx, we conclude that LM = A∗, which means that the Mehler operator (forward equation)
is the adjoint of the generator, i.e., the OU operator (backward equation); that is, we have
LM = L∗OU in L2(dx). This holds for a general potential V , not just V (x) = 1

4 |x|
2. (Here we

need to be slightly careful on the reference measure: if we consider L2(e−
|x|2

4 dx) = L2(dπ),
then L |x|2

4

= L∗OU in L2(dπ).)

To summarize, given a general Fokker-Planck equation:

0 = ∂tρt −∆ρt − div(ρt∇V ) (141)

= ∂tρt − LV ρt − ρt∆V, (142)

where (141) is the continuity equation version and (142) is the drifted heat equation version,
if we assume it admits a stationary distribution π(x) = 1

Z e
−V (x) on Rn (cf. Section ?? ahead

for more details), then the generator A of the drift heat diffusion process (i.e., the Langevin
diffusion) is given by

A = L∗V , (143)

where
LV = LV + ρ∆V = ∆ρ+ 〈∇ρ,∇V 〉+ ∆V, (144)

and the semi-group (Pt)t>0 is given by

Ptf(x) = Eξ∼π[f(e−t∇V (x) +
√

1− e−2tξ)], t > 0. (145)

Letting t → ∞, we see that Pt asymptotically converges to the stationary distribution π
(in L2(π)). Thus from the evolution PDE of probability density functions, we can fully
characterize the related SDEs. The reverse direction from SDEs to PDEs can be found in
Appendix ??, where we use Itô’s formula to show that a measure solution ρt to the continuity
equation can be seen as the law at time t of the process (Xt)t>0 solution to the SDE. This
justifies the equivalence between the PDEs and the SDEs.

3.5.1 Feynman-Kac formula

In this section, we show the equivalence between the Langevin SDE and the Fokker-Planck
PDE. We begin with one-dimensional derivation n = 1. Consider the Langevin diffusion (or
sometimes called the Itô process):

dXt = m(Xt, t) dt+ σ(Xt, t) dWt, (146)
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where (Wt)t>0 is the standard Brownian motion in R. Let f : R→ R be a twice differentiable
function. By Itô’s formula (cf. Lemma B.1), we have

df(Xt) = (m∂xf +
1

2
σ2∂2

xf) dt+ σ(∂xf) dWt,

where m := m(Xt, t) and σ := σ(Xt, t). Taking expectation on both sides, we get

E

[
d

dt
f(Xt)

]
= E

[
m∂xf +

1

2
σ2∂2

xf

]
+ E

[
σ(∂xf)

dWt

dt

]
.

Since σ(∂xf) dWt
dt is a martingale, the second term on the right-hand side is zero. For small

time increment ∆t, we can approximate the left-hand side of the last equation by

E

[
f(Xt+∆t)− f(Xt)

∆t

]
=

∫
R

f(x)ρ(x, t+ ∆t)− f(x)ρ(x, t)

∆
dx

=

∫
R
f(x)

ρ(x, t+ ∆t)− ρ(x, t)

∆
dx

→
∫
R
f(x)∂tρ(x, t) dx as ∆t→ 0,

where ρt := ρ(·, t) is the probability density of Xt. Thus we get∫
R
f(x)∂tρ(x, t) dx =

∫
R
m(x, t)∂xf(x, t)ρ(x, t) dx+

∫
R

1

2
σ2(x, t)∂2

xf(x, t)ρ(x, t) dx.

Now integration-by-parts (without boundary term) on the right-hand side of the last display
gives ∫

f∂tρt = −
∫
f∂x(mρt) +

∫
f∂2

x

(
1

2
σ2ρt

)
.

Since f is arbitrary, we must have

∂tρt = −∂x(mρt) + ∂2
x

(
1

2
σ2ρt

)
(147)

holds in the distribution sense. With the multivariate Itô’s formula in Lemma B.1, higher-
dimensional analog of (147) is given by:

∂tρt = −div(mρt) +

n∑
i,j=1

∂2

∂xi∂xj
(Dijρt) , (148)

where m := m(Xt, t) ∈ Rn and D = (Dij)
n
i,j=1 is an n× n diffusion tensor matrix defined as

D = 1
2σ(Xt, t)σ(Xt, t)

T .

Example 3.13. Let V : Rn → R. Take m(x, t) = ∇V (x) be the gradient vector of V (that is
independent of t) and σ(x, t) =

√
2In. So D = In and

Xt = −∇V (Xt) dt+
√

2 dWt.
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Then the Fokker-Planck equation reads

∂tρt = div(ρt∇V ) +
n∑
i=1

∂2

∂x2
i

ρt = div(ρt∇V ) + ∆ρt

= 〈∇ρt,∇V 〉+ ρt∆V + ∆ρt,

which recovers the Wasserstein gradient flow of the entropy+potential functional F (ρ) =∫
ρ log ρ+

∫
V dρ.

In fact, we have derived the forward and backward equations for the continuous-time Itô
process (146).

Theorem 3.14 (Feynman-Kac formula). Let f(x, t), t ∈ [0, T ] and (Xt) be the Itô process
in (146) with m := m(x, t), σ := σ(x, t). The solution of the following PDE{

∂tf +m∂xf + 1
2σ

2∂2
xf = 0

f(x, T ) = ψ(x) (terminal condition)
(149)

is given by
f(x, t) = E[ψ(XT )|Xt = x] = E[f(XT , T )|Xt = x]. (150)

Proof of Theorem 3.14. Assume the existence of the solution f . By Itô’s formula (cf. Lemma B.1),

df(Xt, t) = (∂tf +m∂xf +
1

2
σ2∂2

xf) dt+ σ(∂xf) dWt.

Under the PDE constraint ∂tf +m∂xf + 1
2σ

2∂2
xf = 0, we integrate to get for T > t,

f(XT , T )− f(Xt, t) =

∫ T

t
σ(∂xf) dWt.

Note that
∫ T
t σ(∂xf) dWt is a martingale because it is an Itô integral of a martingale. Taking

conditional expectation given Xt, we have

E[f(XT , T )|Xt]− f(Xt, t) = E

[∫ T

t
σ(∂xf) dWt|Xt

]
= 0,

i.e., f(Xt, t) = E[f(XT , T )|Xt] = E[ψ(XT )|Xt]. �

Now it is convenient to define a differential operator A via

Af = m∂xf +
1

2
σ2∂2

xf. (151)

The operator (151) gives the backward equation ∂tf + Af = 0. The adjoint operator A∗ in
L2dx is determined by:

〈Af, ρ〉 = 〈f,A∗ρ〉, ∀ ρ, f ∈ L2(dx),

where 〈ρ, f〉 =
∫
ρf . Using integration-by-parts and (151), we get∫

(Af)ρ =

∫
(m∂xf +

1

2
σ2∂2

xf)ρ

=

∫
−∂x(mρ)f + ∂2

x(
1

2
σ2ρ)f =:

∫
(A∗ρ)f,
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where

A∗ρ = −∂x(mρ) + ∂2
x(

1

2
σ2ρ). (152)

The adjoint operator A∗ρ in (152) gives the forward equation:

∂tρt = A∗ρ = −∂x(mρ) + ∂2
x(

1

2
σ2ρ), (153)

which describes the evolution of probability densities of the Itô process (146).
For a multivariate Itô process, the forward operator is give by:

A∗ρ = −div(mρ) +
n∑

i,j=1

∂2

∂xi∂xj

(
1

2
σσTρ

)
(154)

and the backward operator is given by:

Af = 〈m,∇f〉+

〈
1

2
σσT ,∇2f

〉
, (155)

where f, ρ : Rn → R.

3.5.2 Generator and semi-group

Recall that the fundamental solution of the heat equation (∂t − ∆)u = 0 on Rn is the heat
kernel:

H(x, y, t) = (4πt)−n/2 exp

(
−|x− y|

2

4t

)
, x, y ∈ Rn, t > 0.

Let f : Rn → R be a measurable function and define

Ptf(x) =

∫
Rn
f(z)H(x, z, t) dz, x ∈ Rn, t > 0. (156)

Then one can check that:

1. Pt+sf = Pt(Psf) = Ps(Ptf) for all t, s > 0;

2. limt↓0 Ptf(x) = f(x), i.e., the reproducing property.

These two properties means that (Pt)t>0 forms a continuous semi-group of linear operators
on L2(π), where π(x) = (4π)−n/2 exp(−|x|2/4) is the standard Gaussian on Rn. The linear
operators defined in (156) is called the heat semi-group.

Definition 3.15 (Markov process). A continuous-time stochastic process (Xt)t>0 on Rn is said
to be a (homogeneous) Markov process if there exists a semi-group of linear operators (Pt)t>0

satisfying property 1 and 2, and

E[f(Xt+s)|Xr, r 6 t] = (Psf)(Xt) almost everywhere, (157)

for all bounded measurable function f : Rn → R and all s, t > 0.
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In Definition 3.15, the semi-group (Ps) specifies the dynamics of (Xt) and it does not
depend on t. An important function class in testing the Markov property is the indicator
functions f(x) = 1(x 6 y). In such as, the Markov property reads

P(Xt+s 6 y|Xr, r 6 t) = (Psf)(Xt). (158)

Definition 3.16 (Generator of Markov process). Let (Xt)t>0 be a continuous-time Markov
process with the semi-group (Pt). The generator of (Xt) is defined as

Af =
d

dt

∣∣∣∣
t=0

Ptf. (159)

Theorem 3.17 (Generator of Brownian motion). The Laplacian ∆ is the generator of the
standard Brownian motion.

Proof of Theorem 3.17. �

Theorem 3.18 (Semi-group and generator of Ornstein-Uhlenbeck process). Let (Xt)t>0 be the
Ornstein-Uhlenbeck (OU) process:

dXt = −Xt

2
dt+

√
2 dWt.

The semi-group of the OU process is given by:

Ptf(x) = Eξ∼π[f(e−t/2x+
√

1− e−tξ)] t > 0, (160)

where π(x) = (4π)−n/2 exp(−|x|2/4) is the stationary measure of (Xt) in the sense that
Ptf → πf in L2(π). Moreover, the generator A of (Xt) is given by:

Af = −〈∇f, x
2
〉+ ∆f (161)

is the drift Laplacian with the potential φ(x) = |x|2/4.

Remark 3.19. From Theorem 3.18, we see that the backward operator in (155) is the same as
the generator, both equal to the drift Laplacian for the OU process. �

Proof of Theorem 3.18. Obviously limt↓0 Ptf(x) = f(x). For f ∈ L2(π), observe that

‖Ptf − πf‖2L2(π) = EX∼π

[
Eξ∼π[f(e−t/2X +

√
1− e−tξ)]

]2

6 EX∼π Eξ∼π

∣∣∣f(e−t/2︸ ︷︷ ︸
→0

X +
√

1− e−t︸ ︷︷ ︸
→1

ξ)
∣∣∣2

→ 0 as t→∞,

where the second inequality is due to Cauchy-Schwarz and the third step is due to the domi-
nated convergence theorem and Fubini’s theorem. Thus Ptf → πf in L2(π) in the long-time
dynamics.
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Now using the chain rule, we compute

d

dt
Ptf(x) = Eξ∼π

[
〈∇f(e−t/2x+

√
1− e−tξ), −e−t/2x

2
+

e−t

2
√

1− e−t
ξ〉
]

= −e
−t/2

2
Eξ∼π

[
〈∇f(e−t/2x+

√
1− e−tξ), x〉

]
+

e−t

2
√

1− e−t
Eξ∼π

[
〈∇f(e−t/2x+

√
1− e−tξ), ξ〉

]
.

Note that ∇π(ξ) = − ξ
2π(x) and

divξ

(
π(ξ)∇f(e−t/2x+

√
1− e−tξ)

)
= 〈∇π(ξ),∇f(e−t/2x+

√
1− e−tξ)〉

+π(ξ)∆f(e−t/2x+
√

1− e−tξ)
√

1− e−t.

So we have

1

2

∫
Rn
π(ξ)〈ξ,∇f(e−t/2x+

√
1− e−tξ)〉dξ =

∫
Rn
π(ξ)∆f(e−t/2x+

√
1− e−tξ)

√
1− e−t dξ,

i.e.,

1

2
Eξ∼π

[
〈ξ,∇f(e−t/2x+

√
1− e−tξ)〉

]
=
√

1− e−tEξ∼π
[
∆f(e−t/2x+

√
1− e−tξ)

]
,

which is sometimes referred as Stein’s identity or the Gaussian integration-by-parts. Now,
combining all pieces, we see that

d

dt
Ptf(x) =− e−t/2

2
Eξ∼π

[
〈∇f(e−t/2x+

√
1− e−tξ), x〉

]
+ e−tEξ∼π

[
∆f(e−t/2x+

√
1− e−tξ)

]
=− 1

2
Eξ∼π

[
〈∇xf(e−t/2x+

√
1− e−tξ), x〉

]
+ Eξ∼π

[
∆xf(e−t/2x+

√
1− e−tξ)

]
=− 1

2

〈
∇xEξ∼π

[
f(e−t/2x+

√
1− e−tξ)

]
, x
〉

+ ∆xEξ∼π

[
f(e−t/2x+

√
1− e−tξ)

]
Filling the definition (160) of Ptf into the last expression, we get

d

dt
Ptf(x) = −1

2
〈∇Ptf(x), x〉+ ∆Ptf(x).

Since Ptf → f as t ↓ 0, we have

d

dt

∣∣∣∣
t=0

Ptf(x) = −1

2
〈∇f(x), x〉+ ∆f(x),

which gives the generator (161) of the OU process. �
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3.6 Rate of convergence

If Z =
∫
Rn e

−V (x) dx <∞, then the Fokker-Planck equation has a stationary distribution on
Rn:

π(x) =
1

Z
e−V (x), (162)

where 0 < Z <∞ is a normalization constant. To see this, recall that F (ρ) =
∫
ρ log ρ+

∫
V dρ

and δF
δρ (π) = log π + V . Since ∇π = Z−1e−V (−∇V ) = −π∇V ,

π∇
(δF
δρ

(π)
)

= π
∇π
π

+ π∇V = ∇π + π∇V = 0. (163)

Then,

∂tπ = div
(
π∇

(δF
δρ

(π)
))

= 0, (164)

which implies that π is a stationary point of the Fokker-Planck continuity equation. In this
case, the gradient flow of the functional F can be viewed as the gradient flow of the relative
entropy between ρ and π (cf. (168) in Definition 3.20 below):

F (ρ) + logZ =

∫
ρ
[

log
( ρ

e−V

)
+ logZ

]
=

∫
ρ log

(ρ
π

)
= H(ρ‖π) (165)

so that
δF

δρ
(ρ) =

δ(F + logZ)

δρ
(ρ) =

δH(ρ‖π)

δρ
(ρ). (166)

Now suppose the Fokker-Planck equation admits a stationary distribution. Given an
initial distribution ρ0, we would like to ask how fast does the Wasserstein gradient flow
(ρt)t>0 converge to the stationary distribution π? In a nutshell, the answer is given by the
following statement.

If the stationary measure π satisfies a logarithmic Sobolev inequality (LSI), then ρt
converges to π exponentially fast in time t (under numerous distance or divergence
measures).

Suppose π is probability measure (i.e., 0 < Z < ∞). Since the convergence quantities
involved depend only on the (first and second) derivatives of the density π, without loss of
generality, we may assume Z = 1 and

π = e−V . (167)

Definition 3.20 (Relative entropy and relative Fisher information). Let p, q be two probability
measures on Rn such that q � p. Then the relative entropy (or Kullback-Leibler divergence)
between p and q is defined as

H(p‖q) =

∫
log

(
dp

dq

)
dp. (168)

In particular, if dx� p and dx� q, then

H(p‖q) =

∫
p log

(
p

q

)
dx. (169)
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Let π, µ be two probability measures on Rn such that π � µ and dµ
dπ = ρ, then the relative

Fisher information between µ and π is defined as

I(µ‖π) =

∫
|∇ρ|2

ρ
dπ. (170)

We state a powerful information inequality that implies the LSI.

Theorem 3.21 (HWI++ inequality [5]). Let (Rn, | · |, π) be a probability space such that

dπ(x) = e−V (x) dx, (171)

where V : Rn → [0,∞) is a C∞(Rn) function such that Hess(V ) � κIn for some parameter
κ ∈ R. Then for any µ0, µ1 ∈ P2(Rn) such that H(µ0‖π) <∞,

H(µ1‖π)−H(µ0‖π) 6W2(µ0, µ1)
√
I(µ1‖π)− κ

2
W 2

2 (µ0, µ1). (172)

Theorem 3.21 implies several classical functional and information inequalities.

Corollary 3.22. In the setting of Theorem 3.21 and assume further π ∈ P2(Rn), then we have

1. HWI inequality (Theorem 3 in [10]): for any ν ∈ P2(Rn),

H(ν‖π) 6W2(ν, π)
√
I(ν‖π)− κ

2
W 2

2 (ν, π). (173)

2. Talagrand’s T2-inequality: for any ν ∈ P2(Rn) with finite second moment,

κ

2
W 2

2 (ν, π) 6 H(ν‖π). (174)

3. Logarithmic Sobolev inequality: if κ > 0, then for any ν ∈ P(Rn),

H(ν‖π) 6
1

2κ
I(ν‖π). (175)

Combining (174) and (175), we have that if κ > 0, then

W2(ν, π) 6

√
I(ν‖π)

κ
, ∀π � ν. (176)

In Appendix C.1 and C.2, we discuss more details of the LSIs and Talagrand’s transportation
inequalities.

Proof of Corollary 3.22. Corollary 3.22 follows from Theorem 3.21 with specific choices.

1. Take µ0 = π and µ1 = ν.

2. Take µ0 = ν and µ1 = π.

3. Take µ0 = π and µ1 = ν to get the HWI inequality in part 1, and then maximize its
right-hand side −κ

2x
2 +

√
I(ν‖π)x, where the maximizer occurs at x∗ = 1

κ

√
I(ν‖π).

Then a standard approximation argument is sufficient.
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There are various ways of measuring the gap between the gradient flow (ρt)t>0 as a so-
lution of the Fokker-Planck equation and the stationary distribution π: total variation (as
in Meyn-Tweedie’s Markov chain approach), L2-norm, relative entropy, Wasserstein distance,
etc. Below in Theorem 3.23, we state the exponential rate of convergence under the relative
entropy.

Theorem 3.23 (Exponential rate of convergence for the Fokker-Planck gradient flow: relative
entropy). Let (ρt)t>0 solves the (gradient drift) Fokker-Planck equation:

∂tρt = div(∇ρt + ρt∇V ), (177)

where the potential V > 0 satisfies V ∈ C2(Rn). If the Bakry-Émery criterion

Hess(V ) � κIn (178)

holds for some κ > 0 (i.e., HessV (x) � κIn for all x ∈ Rn), then

H(ρt‖π) 6 e−2κtH(ρ0‖π), t > 0, (179)

where π(x) = e−V (x) is the stationary distribution for the Fokker-Planck equation (177).

Note that the Bakry-Émery criterion is a strong convexity (sometimes called the κ-
convexity) requirement for the potential V . From the sampling point of view, the Bakry-
Émery criterion requires that the stationary distribution π is strictly log-concave to obtain
exponential rate of convergence under the relative entropy.

It is known that strictly log-concave probability density satisfies an LSI, and vice versa
(cf. Problem 3.17 in [13]). In the celebrated result of Bakry and Émery, a simple sufficient
condition is given to ensure that the density satisfies an LSI.

Lemma 3.24 (Bakry-Émery criterion). Let V : Rn → R be a C2(Rn) function and dπ = e−V dx
be a probability measure such that Hess(V ) � κIn for some κ > 0. Then π satisfies the LSI
with parameter κ:

H(ν‖π) 6
1

2κ
I(ν‖π) (180)

for all ν ∈ P(Rn) such that π � ν.

However, it is an open question whether or not all log-concave densities satisfy an LSI. It
is even an open question to ask whether or not all log-concave distributions satisfy a Poincaré
inequality with a dimension-free constant. This is the Kannan-Lovász-Simonovits (KLS)
conjecture [1, 3].

Conjecture 3.25 (Kannan-Lovász-Simonovits conjecture, cf. Conjecture 1.2 in [1]). There
exists an absolute constant C > 0 such that for any log-concave probability measure ν on Rn,
we have

Varν(f) := Eν |f − Eν [f ]|2 6 Cλ2
ν Eν |∇f |2 (181)

for any locally Lipschitz (i.e., Lipschitz on any Euclidean ball) function f ∈ L2(ν), where λν
is the square root of the largest eigenvalue of the covariance matrix EX∼ν [XXT ].
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Currently, the best known result is that, for an isotropic n-dimensional log-concave distri-
bution, the dimension-dependent constant C(n) is on the order n1/4 [9].

We also note that the Bakry-Émery criterion can be replaced by a slightly stronger Otto-
Villani criterion (with an additional finite second moment assumption), so that we can obtain
both LSI and T2 inequality.

Lemma 3.26 (Otto-Villani criterion, Theorem 1 in [10]). Let V : Rn → R be a C2(Rn)
function and dπ = e−V dx be a probability measure with a finite second moment such that
Hess(V ) � κIn for some κ > 0. Then π satisfies the LSI and Talagrand’s T2 inequality, both
with parameter κ:

H(ν‖π) 6
1

2κ
I(ν‖π) and

κ

2
W 2

2 (ν, π) 6 H(ν‖π) (182)

for all ν ∈ P(Rn) such that π � ν.

With the (slightly) stronger Otto-Villani criterion, exponential rate of convergence also
holds under the Wasserstein distance [2]. In fact, rate of convergence for (more general)
non-gradient drift Fokker-Planck equation is established in [2].

Theorem 3.27 (Exponential rate of convergence for the Fokker-Planck gradient flow: Wasser-
stein distance). Let (ρt)t>0 solves the (gradient drift) Fokker-Planck equation (177) with the
stationary distribution dπ = e−V dx satisfying the Otto-Villani criterion for some κ > 0 (i.e.,
dπ = e−V dx has finite second moment such that V ∈ C2(Rn) and Hess(V ) � κIn). Then,

W2(ρt, π) 6 e−κtW2(ρ0, π). (183)

Proof of Theorem 3.27. Using the relation between the PDE and SDE, solution to the (gradi-
ent drift) Fokker-Planck equation (177) is the density of the stochastic process (Xt)t>0 solving
the following SDE:

dXt = −∇V (Xt) dt+
√

2 dWt, (184)

where (Wt)t>0 is the standard Brownian motion on Rn and the initial datum has distribution
ρ0 (cf. Section ?? for more details of the equivalence).

Let µ0 and ν0 be two probability measures on Rn, and (X0, Y0) be a coupling at the initial
time with the marginal distributions X0 ∼ µ0 and Y0 ∼ ν0 such that

E |X0 − Y0|2 = W 2
2 (µ0, ν0). (185)

Then we run two coupled copies of the SDE with (Xt)t>0 (resp. (Yt)t>0) as the solution
to (184) starting from X0 ∼ µ0 (resp. Y0 ∼ ν0), both driven by the same Brownian motion
(Wt)t>0. Then,

d

dt
E |Xt − Yt|2 = −2E

〈
Xt − Yt, ∇V (Xt)−∇V (Yt)

〉
. (186)

Note that for any x, y ∈ Rn,

V (x) = V (y) + 〈x− y,∇V (y)〉+
1

2
(x− y)THessV (z)(x− y), (187)

V (y) = V (x) + 〈y − x,∇V (x)〉+
1

2
(y − x)THessV (z′)(y − x), (188)
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where z, z′ are on the line segment joining x and y. Adding the last two equalities, we get

〈x− y,∇V (x)−∇V (y)〉 =
1

2
(x− y)T [HessV (z) + HessV (z′)](x− y). (189)

If Hess(V ) � κIn for some κ > 0, then〈
x− y, ∇V (x)−∇V (y)

〉
> κ|x− y|2, ∀x, y ∈ Rn. (190)

Then Grönwall’s lemma yields that

E |Xt − Yt|2 6 e−2κtE |X0 − Y0|2. (191)

By definition of the Wasserstein distance,

W 2
2 (µt, νt) 6 E |Xt − Yt|2. (192)

Now we have
W 2

2 (µt, νt) 6 e
−2κtW 2

2 (µ0, ν0), (193)

which gives an exponential contraction between any two solutions µt and νt to the Fokker-
Planck equation (177). In particular, (183) follows from choosing ν0 (and thus all νt, t > 0)
as the stationary solution π = e−V . �

For the Mehler flow, recall that the stationary distribution is given by

π(x) = (4π)−n/2 exp
(
− |x|

2

4

)
, (194)

which is a
√

2-rescaled standard Gaussian distribution γ on Rn. By the Gaussian LSI for γ,
we know that π satisfies a similar LSI and thus the Mehler flow has the exponential rate of
convergence to its stationary distribution π.

Corollary 3.28 (Exponential rate of convergence for the Mehler flow). We have

H(ρt‖π) 6 e−tH(ρ0‖π) and W2(ρt, π) 6 e−t/2W2(ρ0, π), t > 0, (195)

where π is the stationary distribution the Mehler flow (ρt)t>0 with V (x) = |x|2
4 . In particular,

ρt converges weakly to π (in distribution) as t→∞.

Proof of Corollary 3.28. For the Mehler flow, V (x) = |x|2
4 ,∇V = x

2 , and Hess(V ) = 1
2In. So

κ = 1
2 . Then Corollary 3.28 follows from Theorem 3.23 and Theorem 3.27. �

Corollary 3.28 is a quantitative version of Boltzmann’s H-theorem stating that the total
entropy of an isolated system can never decrease over time (i.e., the second law of thermody-
namics):

d

dt
H(ρt‖π) = −I(ρt‖π) 6 0 with π =

e−V

Z
. (196)
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4 Optimal transport

4.1 Constant-speed geodesics in Wp

Definition 4.1 (Length of curve). The length of a curve ω : [0, 1]→ X in a metric space (X, d)
is defined as

Length(ω) = sup

{
n−1∑
k=0

d(ω(tk), ω(tk+1)) : n > 1, 0 = t0 < t1 < · · · < tn = 1

}
. (197)

Remark 4.2 (Absolutely continuous curve has finite length). By Definition 3.3, if ω ∈ AC(X),
then there exists an g ∈ L1([0, 1]) (i.e., g has the bounded variation) such that

d(ω(tk), ω(tk+1)) 6
∫ tk+1

tk

g(τ) dτ.

So we have

n−1∑
k=0

d(ω(tk), ω(tk+1)) 6
∫ 1

0
g(τ) dτ =⇒ Length(ω) 6

∫ 1

0
g(τ) dτ <∞.

�

Lemma 4.3 (Derivative of length is metric derivative). If ω ∈ AC(X) is an absolutely contin-
uous curve in a metric space (X, d), then

Length(ω) =

∫ 1

0
|ω′|(t) dt, (198)

where |ω′|(t) is the metric derivative of the curve ω

|ω′|(t) = lim
h→0

d(ω(t+ h), ω(t))

|h|
. (199)

Proof of Lemma 4.3. Since ω ∈ AC(X), after the reparameterization in Remark 3.5, we can
assume that ω is 1-Lipschitz continuous. So by the Rademacher theorem (cf. Theorem 3.6),
the metric derivative |ω′|(t) exists and we have Length(ω) 6

∫ 1
0 |ω

′|(t) dt. �

Definition 4.4 (Length space and geodesic space). Let ω : [0, 1]→ X be an absolutely contin-
uous curve in a metric space (X, d). The curve ω is said to be a geodesic between x0, x1 ∈ X
if it minimizes the length among all absolutely continuous curves such that ω(0) = x0 and
ω(1) = x1.

A space (X, d) is said to be a length space if

d(x, y) = inf {Length(ω) : ω(0) = x0, ω(1) = x1, ω ∈ AC(X)} . (200)

A space (X, d) is said to be a geodesic space if

d(x, y) = min {Length(ω) : ω(0) = x0, ω(1) = x1, ω ∈ AC(X)} . (201)
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Definition 4.5 (Constant-speed geodesic). Let (X, d) be a length space. A curve ω : [0, 1]→ X
is a constant-speed geodesic between ω(0) and ω(1) in X if

d(ω(t), ω(s)) = |t− s| d(ω(0), ω(1)) ∀ t, s ∈ [0, 1]. (202)

Note that a constant-speed geodesic ω is indeed a geodesic. Take any 0 = t0 < t1 < · <
tn = 1 and any other curve ω̃ : [0, 1] → X such that ω̃(0) = ω(0) and ω̃(1) = ω(1). Then we
have

n−1∑
k=0

d(ω̃(tk), ω̃(tk+1)) > d(ω̃(t0), ω̃(tn)) = d(ω̃(0), ω̃(1)) = d(ω(0), ω(1)),

n−1∑
k=0

d(ω(tk), ω(tk+1)) =

n−1∑
k=0

(tk+1 − tk)d(ω(0), ω(t1)) = d(ω(0), ω(t1)),

which imply that
Length(ω̃) > d(ω(0), ω(1)) = Length(ω).

Lemma 4.6 (Characterization of constant-speed geodesic in metric space). The p > 1 and
ω : [0, 1]→ X connecting x0 and x1 in X. Then the followings are equivalent.

1. ω is a constant-speed geodesic.

2. ω ∈ AC(X) such that |ω′|(t) = d(ω(0), ω(1)) for almost everywhere t ∈ [0, 1].

3. ω solves min
{∫ 1

0 |ω̃
′|p(t) dt : ω̃(0) = x0, ω̃(1) = x1

}
.

Theorem 4.7 (Constant-speed geodesic in Wp). Let p > 1, Ω ⊂ Rn be a convex subset, and
µ, ν ∈ Pp(Ω). Suppose γ ∈ Γ(µ, ν) is an optimal transport plan for the cost |x − y|p. Define
πt : Ω× Ω→ Ω as

πt(x, y) = (1− t)x+ ty. (203)

Then the curve µt = (πt)]γ is a constant-speed geodesic in (Pp(Ω),Wp) connecting µ0 = µ
and µ1 = ν.

Remark 4.8 (McCann’s interpolation). If µ has a density w.r.t. the Lebesgue measure dx on
Rn, then, by Theorem 4.7, there is an optimal transport map T from µ to ν such that

µt = ((1− t)id + tT )] µ (204)

is a constant-speed geodesic in Wp. This implies that the p-Wasserstein space (Pp(Ω),Wp)
is a geodesic space. The curve (204) is called McCann’s interpolation. In particular, µ1/2 is
called the barycenter of µ and ν.

Proof of Theorem 4.7. It suffices to show that Wp(µt, µs) 6 (t − s)Wp(µ, ν) for all 0 6 s <
t 6 1 because this inequality and the triangle inequality

Wp(µ, ν) 6Wp(µ0, µs)+Wp(µs, µt)+Wp(µt, µ1) 6 [(s−0)+(t−s)+(1−t)]Wp(µ, ν) = Wp(µ, ν)

imply that all inequalities are equalities. Thus Wp(µs, µt) = (t − s)Wp(µ, ν) for all 0 6 s <
t 6 1. Recall µt = (πt)]γ, where πt(x, y) = (1− t)x+ ty. Let

γts := (πs, πt)]γ = ((πs)]γ, (πt)]γ) ∈ Γ(µs, µt) (205)
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be a coupling of µs and µt. Then,

Wp(µs, µt) 6

(∫
Ω
|x− y|p dγts

)1/p

=

(∫
Ω
|x− y|p d(πs, πt)]γ

)1/p

=(∗)

(∫
Ω
|πs(x, y)− πt(x, y)|p dγ(x, y)

)1/p

=

(∫
Ω
|(1− s)x+ sy − (1− t)x− ty|p dγ(x, y)

)1/p

=

(∫
Ω
|t− s|p|x− y|p dγ(x, y)

)1/p

= |t− s|
(∫

Ω
|x− y|p dγ(x, y)

)1/p

= (t− s)Wp(µ, ν),

where (∗) follows from change of variables. �

4.2 Benamou-Brenier formulation

Now we are ready to formulate a dynamic version of the Kantorovich optimal transport
problem as an optimal flow problem. This is referred as the Benamou-Brenier formulation.

Recall that (Pp(Ω),Wp) is a geodesic space. For µ, ν ∈ Pp(Ω), we can take a constant-
speed geodesic (µt)t∈[0,1] connecting µ0 and ν = µ1. By Lemma 4.6, (µt)t∈[0,1] is an absolutely
continuous curve such that for almost everywhere t ∈ [0, 1],

|µ′|(t) = Wp(µ0, µ1) = Wp(µ, ν)

and µt solves

min

{∫ 1

0
|µ̃′|p(t) dt : µ̃(0) = x0, µ̃(1) = x1, µ̃ ∈ AC(Pp(Ω))

}
.

Theorem 4.9 (Benamou-Brenier formula). We have

W p
p (µ, ν) = min

{∫ 1

0
‖vt‖pLp(µt)

dt : µ̃(0) = µ, µ̃(1) = ν, ∂tµ̃t + div(µ̃tvt) = 0

}
. (206)

Proof of Theorem 4.9. �

4.3 Caffarelli contration theorem

Definition 4.10 (Brenier map). Let µ and ν be two probability measures on Rn. The Bre-
nier map (i.e., the optimal transport map) y : (Rn, µ) → (Rn, ν) satisfies the following two
properties:

1. cost-minimizing: y minimizes the cost functional
∫
Rn c(x, y(x)) dµ(x);

2. measure-preserving: for any test function ψ : Rn → R, one has∫
Rn
ψ(y) dν(y) =

∫
Rn
ψ(y(x)) dµ(x), (207)

i.e., ν is the pushforward measure of µ by y, denote as ν = y]µ.
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Classical optimal transport theory imply that the Brenier map exists and unique if µ� dx.
In addition, if µ and ν has smooth densities f and g w.r.t. the Lebesgue measure dx on Rn,
respectively, such that f, g > 0, then the Brenier map y is given by a gradient of a convex
function, i.e.,

y(x) = ∇ϕ(x) (208)

for some convex and smooth potential ϕ : Rn → R. Since y is measure-preserving, by change
of variables, we have∫

Rn
ψ(∇ϕ(x))f(x) dx =

∫
Rn
ψ(y)g(y) dy =

∫
Rn
ψ(∇ϕ(x))g(∇ϕ(x)) det(∇2ϕ(x)) dx.

This gives the Monge-Ampère equation (in the distribution sense):

det(∇2ϕ(x)) =
f(x)

g(∇ϕ(x))
. (209)

Remark 4.11 (Regularity of ϕ). If f, g ∈ C2(Ω) where Ω ⊂ Rn is a convex subset, then
ϕ ∈ C2,α(Ω), where ϕ satisfies the Monge-Ampère equation (209) in the classical sense. This
implies that ϕ is a strongly convex (i.e., ∇2ϕ(x) > 0) strong/classical) solution of the Monge-
Ampère equation. �

A theorem of Caffarelli in [4] shows that the Brenier map pushing forward a source Gaus-
sian measure to a more log-concave target measure contracts Euclidean distance.

Theorem 4.12 (Caffarelli contration theorem). Let µ and ν be two probability measures on
Rn with Lebesgue densities f and g, respectively, i.e., dµ(x) = f(x) dx and dν(x) = g(x) dx.
Suppose f(x) = e−Q(x), where Q(x) = 1

2x
TAx for some positive semi-definite matrix A =

(aij)
n
i,j=1 (not depend on x). Let g(x) = e−Q(x)−F (x), where F : Rn → R is convex. Let

x 7→ y(x) be the Brenier map from µ to ν. Then we have

|y(x1)− y(x2)| 6 |x1 − x2| (210)

for all x1, x2 ∈ Rn, i.e., y is a contraction (or 1-Lipschitz function).

To prove Caffarelli contraction in Theorem 4.12, we first give a formal proof and then a
rigorous proof.

Formal proof of Theorem 4.12. Let ρ(B) = logdet(B) for an n×n positive definite matrix B.
By the Monge-Ampère equation (209),

ρ(∇2ϕ(x)) = logdet(∇2ϕ(x)) = log f(x)− log g(∇ϕ(x)). (211)

Assume ϕ ∈ C4 such that ∇2ϕ > 0 is positive definite (as a matrix inequality) and y = ∇ϕ.
Denote

ϕi := ∂iϕ =
∂

∂xi
ϕ, ∇iρ(∇2ϕ) := ∂iρ(∇2φ) =

∂

∂xi
ρ(∇2φ),

ϕij := ∂2
ijϕ =

∂2

∂xixj
ϕ, ∇2

ijρ(∇2ϕ) := ∂2
ijρ(∇2φ) =

∂2

∂xixj
ρ(∇2φ).

52



Using the chain rule on the matrix B = (bij)
n
i,j=1, we have

∇1ρ(∇2ϕ) =
n∑

i,j=1

∂ijρ(∇2ϕ)∇2
ijϕ1,

∇2
11ρ(∇2ϕ) =

n∑
i,j=1

∂ijρ(∇2ϕ)∇2
ijϕ11 +

n∑
i,j=1

n∑
k,l=1

∂2
ij,klρ(∇2ϕ)∇2

ijϕ1∇2
klϕ1. (212)

Note that ∂ijρ(B) = ∂
∂Bρ(B) = B−1, i.e., ∂

∂bij
ρ = bji where B−1 = (bji)ni,j=1 if det(B) 6= 0.

Assume that ϕ11 achieves a maximum in Rn. At the maximum point x0 ∈ Rn of ϕ, we have
∇2
ijϕ11(x0) 6 0 because ϕ ∈ C4. Applying Lemma 4.13 to (212), we have

∇2
11ρ(∇2ϕ(x0)) =

n∑
i,j=1

∂ijρ(∇2ϕ(x0))︸ ︷︷ ︸
=(∇ϕ(x0))−1>0

∇2
ijϕ11(x0)︸ ︷︷ ︸
60

+
n∑

i,j=1

n∑
k,l=1

∂2
ij,klρ(∇2ϕ(x0))︸ ︷︷ ︸

<0

∇2
ijϕ1(x0)∇2

klϕ1(x0)

6 0.

Then this inequality and the Monge-Ampère equation (211) imply that

∇2
11ρ(∇2ϕ(x0)) = ∇2

11 log f(x0)−∇2
11 log g(∇ϕ(x0))

= −∇2
11Q(x0) +∇2

11Q(∇ϕ(x0)) +∇2
11F (∇ϕ(x0))

6 0.

Since ϕ11 achieves the maximum at x0 in all directions ϕαα, α = 1, . . . , n, we can rotate in a
suitable basis such that we can diagonalize the Hessian matrix

∇2ϕ(x0) =

 λ1 . . . 0
...

. . .
...

0 . . . λn


with λ1 = ϕ11(x0), ϕ11i(x0) = 0 for all i = 1, . . . , n, and ϕi1(x0) = 0 for all i 6= 1. Note that

∇1F (∇ϕ(x)) =

n∑
i=1

∂iF (∇ϕ(x))ϕi1(x),

∇2
11F (∇ϕ(x)) =

n∑
i,j=1

∂2
ijF (∇ϕ(x))ϕi1(x)ϕj1(x) +

n∑
i=1

∂iF (∇ϕ(x))ϕi11(x) >
n∑
i=1

∂iF (∇ϕ(x))ϕi11(x),

where the last inequality is due to the convexity of F . So we have

∇2
11F (∇ϕ(x0)) >

n∑
i=1

∂iF (∇ϕ(x0))ϕi11(x0) = 0.

Thus, we get

∇2
11Q(x0) > ∇2

11Q(∇ϕ(x0)) +∇2
11F (∇ϕ(x0)) > ∇2

11Q(∇ϕ(x0)). (213)
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Recall that Q(x) = 1
2x

TAx and ∇2
11Q(x) = a11 where A = (aij)

n
i,j=1. Then,

∇1Q(∇ϕ(x)) =
n∑

i,j=1

aij (∇ϕ(x))j ϕi1(x) =
n∑

i,j=1

aij ϕj(x)ϕi1(x),

∇2
11Q(∇ϕ(x)) =

n∑
i,j=1

aij [ϕj1(x)ϕi1(x) + ϕj(x)ϕi11(x)] .

Then we have

∇2
11Q(∇ϕ(x0)) =

n∑
i,j=1

aij [ϕj1(x0)ϕi1(x0) + ϕj(x0)ϕi11(x0)]

=
n∑

i,j=1

aijϕj1(x0)ϕi1(x0) = a11ϕ
2
11(x0).

Now filling all pieces into (213), we get a11ϕ
2
11(x0) 6 a11. Since a11 > 0, we conclude that

φ2
11(x0) 6 1, which implies that the eigenvalues of the Hessian matrix ∇2ϕ(x) are uniformly

bounded in [0, 1] on Rn. This means that the Brenier map y = ∇ϕ is a 1-Lipschitz function.
�

Lemma 4.13 (Concavity of logdet function). The function ρ(B) = logdet(B) for n×n positive
definite matrix B > 0 is strictly concave on positive symmetric matrices, i.e.,(

∂2ρ

∂bijbkl

)n
i,j,k,l=1

< 0 (214)

is a negative definite symmetric matrix (as a matrix inequality).

Proof of Lemma 4.13. We first prove the 2 × 2 case. After diagonalization, we may assume
that

B =

(
λ1 0
0 λ2

)
with λ1, λ2 > 0.

For x, y, z ∈ R, define

%(x, y, z) = logdet

(
λ1 + x z
z λ2 + y

)
= log

(
(λ1 + x)(λ2 + y)− z2

)
.

Then elementary calculation yields that

∂2ρ

∂x2

∣∣∣∣
(0,0,0)

= − 1

λ2
1

,
∂2ρ

∂y2

∣∣∣∣
(0,0,0)

= − 1

λ2
2

,
∂2ρ

∂z2

∣∣∣∣
(0,0,0)

= − 2

λ1λ2
,

and all mixed second-order partial derivatives are zeros. For the general n × n case, after
diagonalization, we similarly can assume B is a diagonal matrix with positive eigenvalues
λ1, . . . , λn. Define

%((xij)16i<j6n) := logdet
(
B +

n∑
i=1

xiiEii +
∑

16i<j6n

xij(Eij + Eji)
)
,
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where Eij = eie
T
j and ei = (0, . . . , 0, 1, 0, . . . , 0)T with the only i-th position being 1 and all

other entries being 0. Then,

∂2ρ

∂x2
ii

∣∣∣∣
(0,...,0)

= − 1

λ2
i

,
∂2ρ

∂x2
ij

∣∣∣∣∣
(0,...,0)

= − 2

λiλj
for i 6= j,

and all mixed second-order partial derivatives are zeros. �

4.3.1 Rigorous proof

There are several places in the formal proof of Theorem 4.12 to be made rigorous. This
involves some extra geometric argument. The idea is to replace ∇2ϕ by the second difference
of ϕ.

Rigorous proof of Theorem 4.12. Define the second difference of ϕ as

δϕ(x) := δ2ϕ(x) = [ϕ(x+ he)− ϕ(x)]− [ϕ(x)− ϕ(x− he)]
= ϕ(x+ he) + ϕ(x− he)− 2ϕ(x),

where e is a unit vector in Rn and h > 0. Since

lim
h↓0

δϕ(x)

h2
= 〈∇2ϕ(x)e, e〉,

it suffices to show that
δϕ(x) 6 h2. (215)

Step 1: show that for each fixed h and e, δϕ(x)→ 0 as |x| → ∞.
Fix an h > 0 and unit vector e ∈ Rn (i.e., |e| = 1). By approximation, we can modify F

such that F = +∞ on Rn \BR for some large enough R, i.e.,

g(y) := gR(x) = e−Q(y)−F (y)

{
> 0 on y ∈ BR
→ 0 as y → ∂BR

and yR = ∇ϕ, (216)

where ϕ is the Brenier map from f dx to gR dx. In the sequel, we shall denote g(x) := gR(x)
y(x) := yR(x).

Lemma 4.14. In the setting of Theorem 4.12 and let yR(x) be defined in (216). Then yR(x)→
x
|x|R uniformly as |x| → ∞.

Let xt = x0 + te. Since

d

dt
(ϕ(xt)− ϕ(x0)) = 〈∇ϕ(xt), e〉,

fundamental theorem of calculus yields that

δϕ(x0) = [ϕ(x0 + he)− ϕ(x0)]− [ϕ(x0)− ϕ(x0 − he)]

=

∫ h

0
〈∇ϕ(xt), e〉dt−

∫ h

0
〈∇ϕ(x−t), e〉dt

=

∫ h

0
〈∇ϕ(x0 + te)−∇ϕ(x0 − te), e〉dt. (217)
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By Lemma 4.14, we have

∇ϕ(x0 ± te) = y(x0 ± te) ≈
x0 ± te
|x0 ± te|

R uniformly in 0 6 t 6 h,

as |x0 ± te| → ∞, which implies that

∇ϕ(x0 ± te) ≈
x0

|x0|
R as |x0| → ∞.

Then,

〈∇ϕ(x0 + te)−∇ϕ(x0 − te), e〉 ≈
〈

2te

|x0|
R, e

〉
=

2tR

|x0|
→ 0

uniformly in 0 6 t 6 h and |e| = 1, as |x0| → ∞. Integrating this to get

δϕ(x0)→ 0 as |x0| → ∞.

Thus δϕ achieves its maximum over all (x0, e) such that |e| = 1.
Step 2: mimic the formal proof by replacing ∇2ϕ with δϕ and bound δϕ.

Now, we fix a point x0 ∈ Rn and a direction e, at which δϕ achieves its maximum. Define

θ(x) := log f(x)− log g(∇ϕ(x)),

ρ(∇2ϕ(x)) := logdet(∇2ϕ(x)).

By the Monge-Ampère equation (209), we have θ(x) = ρ(∇2ϕ(x)). Since ρ is concave (cf.
Lemma 4.13), ρ(B)− ρ(A) 6 〈∇ρ(A), B −A〉 for any A,B > 0. Then,

ρ(∇2ϕ(x0 ± he))− ρ(∇2ϕ(x0)) 6 〈∇ρ(∇2ϕ(x0)),∇2ϕ(x0 ± he)−∇2ϕ(x0)〉

=

n∑
i,j=1

Mij(∇2ϕ(x0)) (ϕij(x0 ± he)− ϕij(x0)) ,

where [Mij(∇2ϕ(x0))]ni,j=1 = [∇2ϕ(x0)]−1 > 0 as a matrix inequality. Thus, we get

θ(x0 ± he)− θ(x0) 6
n∑

i,j=1

Mij(∇2ϕ(x0)) (ϕij(x0 ± he)− ϕij(x0)) ,

which implies that

δθ(x0) = [θ(x0 + he)− θ(x0)] + [θ(x0 − he)− θ(x0)]

6
n∑

i,j=1

Mij(∇2ϕ(x0))δϕij(x0)

= 〈M(∇2ϕ(x0))︸ ︷︷ ︸
>0

, δϕ(x0)︸ ︷︷ ︸
60

〉 6 0, (218)

because ∇2δϕ(x0) 6 0 as x0 is a maximizer of δϕ (i.e., the second derivative test for δϕ).
On the other hand, recall

θ(x) = log f(x)− log g(∇ϕ(x)) = −Q(x) +Q(y(x)) + F (y(x)), (219)

56



where y(x) = ∇ϕ(x). Since Q(x) = B(x, x) is a symmetric bilinear form, we have for any
z ∈ Rn,

δQ(z) = [Q(z + he)−Q(z)] + [Q(z − he)−Q(z)]

= B(z + he, z + he) +B(z − he, z − he)− 2B(z, z)

= 2h2B(e, e),

which does not depend on z. So we can write

δQ(x) = 2h2B(e, e) with x 7→ x± he.

Because δϕ(x) achieves maximum at x0, by the first derivative test, we have

∇δϕ(x0) = ∇ϕ(x0 + eh) +∇ϕ(x0 − eh)− 2∇ϕ(x0) = 0. (220)

In addition, because δϕ is also stationary w.r.t. the unit vector e, we must have for any τ ⊥ e,

h (∇τϕ(x0 + eh)−∇τϕ(x0 − eh)) := h〈τ,∇ϕ(x0 + eh)−∇ϕ(x0 − eh)〉 = 0, (221)

which means that ∇ϕ(x0 + eh)−∇ϕ(x0 − eh) is a multiple of e, i.e.,

∇ϕ(x0 + eh)−∇ϕ(x0 − eh) = 2λe (222)

for some λ ∈ R. Combining (220) and (222), we see that

0 = [∇ϕ(x0 + eh)−∇ϕ(x0)] + [∇ϕ(x0 − eh)−∇ϕ(x0)],

2λe = [∇ϕ(x0 + eh)−∇ϕ(x0)]− [∇ϕ(x0 − eh)−∇ϕ(x0)].

Thus we must have

λe = ∇ϕ(x0 + eh)−∇ϕ(x0),

−λe = ∇ϕ(x0 − eh)−∇ϕ(x0).

Since ϕ is convex, we have
〈e, λe〉 > h∇2ϕ(x0)(e, e),

which gives
eT [λIn − h∇2ϕ(x0)]e > 0.

So λ > 0. Note that

δQ(∇ϕ(x0)) = Q(∇ϕ(x0 + he)) +Q(∇ϕ(x0 − he))− 2Q(∇ϕ(x0))

= Q(∇ϕ(x0) + λe) +Q(∇ϕ(x0)− λe)− 2Q(∇ϕ(x0))

= 2λ2B(e, e),

which gives the “curvature” of y = y(x) = ∇ϕ(x). Moreover, since F is convex,

δF (∇ϕ(x0)) = F (∇ϕ(x0 + he)) + F (∇ϕ(x0 − he))− 2F (∇ϕ(x0))

= F (∇ϕ(x0) + λe) + F (∇ϕ(x0)− λe)− 2F (∇ϕ(x0))

> 0.
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Now filling all pieces into (219) and using (218), we see that

0 > δθ(x0) = −δQ(x0) + δQ(∇ϕ(x0)) + δF (∇ϕ(x0)) > −δQ(x0) + δQ(∇ϕ(x0))

and thus
2λ2B(e, e) 6 2h2B(e, e).

Since B(e, e) = Q(e) = 1
2e
TAe > 0 and λ > 0, we have 0 6 λ 6 h. Recall the integral

representation of δϕ in (217):

δϕ(x0) =

∫ h

0
〈∇ϕ(x0 + te)−∇ϕ(x0 − te), e〉 dt. (223)

It is easy to check that the integrand is non-decreasing in t. Indeed,

d

dt
ϕ(x0 + te) = 〈∇ϕ(x0 + te), e〉, d

dt
ϕ(x0 − te) = −〈∇ϕ(x0 − te), e〉, (224)

and

d2

dt2
ϕ(x0 + te) = 〈∇2ϕ(x0 + te)e, e〉 > 0,

d2

dt2
ϕ(x0 − te) = 〈∇2ϕ(x0 − te)e, e〉 > 0, (225)

because ϕ is convex. So

δϕ(x0) 6
∫ h

0
〈∇ϕ(x0 + he)−∇ϕ(x0 − he), e〉 dt

=

∫ h

0
〈2λe, e〉dt 6

∫ h

0
2hdt = 2h2,

i.e., we have shown that δϕ(x) 6 2h2 uniformly in x. So all the eigenvalues of ∇2ϕ are
between 0 and 2. Thus,

|y(x1)− y(x2)| 6 2|x1 − x2| for all x1, x2 ∈ Rn, (226)

and we are off (210) by a factor of 2.
Step 3: bootstrap the priori estimate to conclude.

By the computation (223), (224), (225) in Step 2, we have seen that

ξt :=
d

dt
〈∇ϕ(x0 + te)−∇ϕ(x0 − te), e〉 = 〈∇2ϕ(x0 + te)e, e〉+ 〈∇2ϕ(x0 − te)e, e〉.

If ∇2ϕ(x0) 6 α0In for some 1 < α0 6 2 as a priori estimate, then ξt 6 2α0 and

δϕ(x0) 6
∫ h

0
min{2h, 2α0t} dt

6
∫ h/α0

0
2α0tdt+

∫ h

h/α0

2hdt

= 2h2 − h2

α0
=

(
2− 1

α0

)
h2,
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i.e., we get a new bound

δϕ 6 α1h
2, where α1 = 2− 1

α0
.

Now we iterate to get δϕ 6 αkh2, where

αk+1 = 2− 1

αk
for k = 0, 1, 2, . . . with α0 = 2.

Then it is easy to check that the sequence (αk) ↓ 1 as k → ∞, and the limit α∞ of this
sequence is the fixed point of α = 2− 1

α . Solving the last equation for 1 6 α 6 2, we see that
α∞ = 1 and the proof of the Caffarelli contraction theorem is complete. �

Proof of Lemma 4.14. Since ϕ is convex, y = ∇ϕ is a monotone map, i.e., 〈x − x0, y(x) −
y(x0)〉 > 0. For a unit vector N ∈ Rn, we let

Γ(q, θ,N) = {q + tα : q ∈ Rn, α ∈ Rn, |α| = 1, |angle(α,N)| 6 θ, t > 0}

be the cone with vertex q, angle θ, and central axis N . Denote y0 = y(x0). Then we claim
that

Γ
(
y0,

π

2
− ε,N

)
∩BR ⊂ y (Γ(x0, π − ε,N)) . (227)

Indeed, consider (x0, y(x0)), (x, y(x)), and s, t > 0. If y = y0 + tβ and x = x0 + sα for some
|α| = |β| = 1, where y0 = y(x0) and y = y(x), then by the monotonicity of the map y we have

0 6 〈x− x0, y(x)− y(x0)〉 = 〈sα, tβ〉 = st〈α, β〉.

So 〈α, β〉 > 0, i.e., |angle(α, β)| 6 π/2. Then

|angle(α,N)| 6 |angle(α, β)|+ |angle(β,N)| 6 π

2
+
π

2
− ε = π − ε,

which proves the claim (227). Now volume comparison gives

Vol
(

Γ
(
y0,

π

2
− ε,N

)
∩BR

)
6 Volf (Γ(x0, π − ε,N)) ,

where f = e−Q. If we take N = x0
|x0| , then

Volf (Γ(x0, π − ε,N)) =

∫
Γ(x0,π−ε,N)

e−Q(x) dx→ 0 as |x0| → ∞

exponentially fast. But the only way that Volf (Γ(x0, π − ε,N)) → 0 if y0 = y(x0) → RN
where N = x0

|x0| . This proves Lemma 4.14. �

4.3.2 Generalization via reverse heat flow

4.3.3 Equality case

5 Mean curvature flow

In this section, we turn to the nonlinear and geometric heat equation that describes the
time evolution of submanifolds deformed by some vector field that minimizing the volume
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functional. Let M := Mn ⊂ RN be an n-dimensional closed submanifold embedded in an
ambient Euclidean space RN . Let v be a vector field in RN and ∇ be the Euclidean covariant
derivative (cf. the definition of covariant derivative in Appendix D.5). For p ∈ M , denote
TpM as the tangent space to M at p, and T⊥p M as the orthogonal complement of TpM . Let
(ei)

n
i=1 be an orthonormal frame for TpM . The divergence of v on M is defined as

divM (v) =
n∑
i=1

〈ei,∇eiv〉 =: 〈ei,∇eiv〉, (228)

where we use the Einstein summation convention to omit the summation notation. This
convention will be used throughout the rest of this section.

Definition 5.1 (Laplacian on manifold). Let Mn ⊂ RN be a submanifold and f : RN → R.
The Laplacian (or Laplacian-Beltrami) operator on M is defined as

∆Mf = divM (∇>f) = 〈ei,∇ei∇>f〉, (229)

where ∇>f is the tangential component of ∇f such that ∇f = ∇>f +∇⊥f and ∇⊥f is the
orthogonal component of ∇f .

Definition 5.2 (Second fundamental form). Let Mn ⊂ RN be a submanifold. The second
fundamental form of M is defined as

A : TpM × TpM → T⊥p M, (230)

A(X,Y ) = ∇⊥XY, (231)

where X and Y are vector fields tangential to M when restricted to M .

Remark 5.3. Note that ∇XY can be understood as ∇XY , where X and Y are smooth exten-
sions of X and Y from M to RN . Moreover, since ∇XY −∇YX = [X,Y ] and the Lie bracket
[X,Y ] of X and Y is a tangential vector field, we have ∇>XY − ∇>YX = 0. So A is bilinear
and symmetric. In tensor calculus language, A is said to be a symmetric (0, 2)-tensor taking
values in the normal bundle. Finally, we have the following decomposition

∇XY = ∇>XY +∇⊥XY, (232)

where ∇>XY is the induced connection on M and ∇⊥XY is the second fundamental form of M .
�

Definition 5.4. Let Mn ⊂ RN be a submanifold. The mean curvature of M is defined as

H = −A(ei, ei) = − tr(A) = − tr(∇⊥eiei), (233)

where (ei)
n
i=1 is an orthonormal basis (ONB) for TpM for p ∈M .

Lemma 5.5 (Compute ∆M on M of restriction of a function on RN ). Let Mn ⊂ RN be a
submanifold and (ei)

n
i=1 is an ONB for TpM . For f : RN → R, we have

∆Mf = ∇2f(ei, ei)− 〈H,∇f〉, (234)

where ∇2f is the RN -Hessian of f .
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Note that the Laplacian ∆M on M is the trace of the Hessian on the tangent space with
a correction term from the Euclidean subspace due to the second fundamental term.

Proof of Lemma 5.5. If n is a normal vector to TpM , then by the Leibniz rule (cf. Ap-
pendix D.5),

0 = ei〈ei,n〉 := ∇ei〈ei,n〉 = 〈∇eiei,n〉+ 〈ei,∇ein〉,

which implies that
〈ei,∇ein〉 = −〈∇eiei,n〉 = −〈∇⊥eiei,n〉.

Then we compute

∆Mf = divM (∇>f) = divM (∇f)− divM (∇⊥f)

= 〈ei,∇ei∇f〉 − 〈ei,∇ei∇⊥f〉
= ∇2f(ei, ei) + 〈∇⊥eiei,∇

⊥f〉
= ∇2f(ei, ei) + 〈∇⊥eiei,∇f〉
= ∇2f(ei, ei) + 〈H,∇f〉,

because ∇⊥f is normal. �

Throughout the rest of this section, we shall adopt the following notation. Let f : RN ×
R→ R be a function f(x, t) of space and time. We use ∂f

∂t to denote the partial derivative of
f w.r.t. t. If x := x(t) is a function of t, we use ∂tf to denote the total time derivative of f ,
i.e.,

∂tf =
d

dt
f(x(t), t) = 〈∇f, xt〉+

∂f

∂t
, (235)

where xt = ∂x
∂t .

5.1 First variation of volume functional

Given an infinitely differentiable (i.e., smooth), compactly supported, normal vector field v
on M , consider the one-parameter variation

Mt,v = {x+ tv(x) : x ∈M}, (236)

which gives a curve t 7→ Mt,v in the space of submanifolds with M0,v = M . To study the
geometric flow of the one-parameter family submanifolds, we need first to compute the time
derivative of volume, which is given by the first variation formula of volume.

Lemma 5.6 (First variation of volume functional). Let Mn ⊂ RN be a submanifold and v be
a field with compact support in M . The first variation formula of volume is given by

d

dt

∣∣∣
t=0

Vol(Mt,v) =

∫
M
〈v, H〉, (237)

where H is the mean curvature vector in (233) and the integration
∫
M is with respect to the

volume form dVolM .
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Proof of Lemma 5.6. Note that derivative of the volume element µ := µ(t)dVol(Mt,v) of Mt,v

satisfies:
d

dt

∣∣∣∣
t=0

µ(t) = divM (v)µ(0).

Let (ei)
n
i=1 be an ONB for M . Note that

divM (v) = divM (v⊥) + divM (v>)

= 〈∇eiv⊥, ei〉+ divM (v>)

= −〈v⊥,∇eiei〉+ divM (v>)

= 〈v⊥, H〉+ divM (v>)

= 〈v, H〉+ divM (v>),

because 〈v>, H〉 = 0. Then,

d

dt

∣∣∣∣
t=0

µ(t) =
(
〈v, H〉+ divM (v>)

)
µ(0).

Integrating on M to get

d

dt

∣∣∣∣
t=0

Vol(Mt,v) =

∫
M
〈v, H〉dVolM +

∫
M

divM (v>) dVolM .

Since v has compact support in M ,
∫
M divM (v>) dVolM = 0. Thus we have

d

dt

∣∣∣∣
t=0

Vol(Mt,v) =

∫
M
〈v, H〉 dVolM .

�

Example 5.7 (n-sphere). Consider the n-sphere M = {x ∈ Rn+1 : |x| = r} with radius r
embedded in Rn+1 for n > 1 and v = x/|x| is the unit normal vector field (since M is a
hypersurface in Rn+1). Consequently the one-parameter variation of M is given by

Mt,v =
{
x+ s

x

|x|
: x ∈M

}
=
{(

1 +
t

r

)
x : |x| = r

}
. (238)

Then,

Vol(Mt,v) =
(

1 +
t

r

)n
Vol(M) (239)

and

Vol(Mt,v)−Vol(M)

t
=

(
1 + s

r

)n
− 1

t
Vol(M). (240)

Letting t→ 0, we get
d

dt

∣∣∣
t=0

Vol(Mt,v) =
n

r
Vol(M). (241)

On the other hand,

〈H,v〉 = −
n∑
i=1

〈∇⊥eiei,v〉 =
n∑
i=1

〈ei,∇eiv〉 = divM (v) = divM

( x
|x|

)
=
n

r
, (242)
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which implies that ∫
M
〈H,v〉 =

n

r
Vol(M). (243)

Combining (241) and (243), we see that (237) indeed holds for n-sphere. �

The first variation formula in Lemma 5.6 together with the Cauchy-Schwarz inequality
imply that the volume functional is minimized at v⊥ = −H. For smoothly evolving subman-
ifolds Mn

t = {F (x, t) : x ∈ Mn, t ∈ R} for some function F : M × R → RN , this means
that x⊥t = −H is the (negative) gradient flow of the volume functional, where xt = ∂x

∂t and
x := x(t) = F (x, t) for x ∈M .

Definition 5.8 (Mean curvature flow). Let Mn
t ⊂ RN be submanifolds. Mt := Mn

t is said to
flow by the mean curvature flow (MCF) if

x⊥t = −H, (244)

where x⊥t is the normal component of the time derivative xt = ∂x
∂t of the position vector

x := x(t) ∈Mt. If n = 1, then (244) is also called the curve-shortening flow.

In view of the first variation formula (237), we see that the mean curvature flow (244) is
the negative gradient flow of volume.

Remark 5.9 (Reparametrization of MCF). The MCF defined in (244) is often written as

xt = −H. (245)

Since a tangential vector field does not change the volume functional, the MCF defined
by (244) and (245) only differ by a tangential diffeomorphism. Thus we have the same MCF
(Mt) with different parameterization. In the sequel, we can either use (244) or (245) as our
definition of the MCF. �

Lemma 5.10 (Compute total time derivative of a function on the MCF). Let Mt := Mn
t ⊂ RN

flow by the MCF and f : RN × I → R where I ⊂ R. Then

∂tf = −〈∇f,H〉+
∂f

∂t
, (246)

Proof of Lemma 5.10. This lemma follows from (246) and the definition of the MCF (245).
�

Lemma 5.11. Let Mn
t ⊂ RN flow by the MCF. Then we have

1. (∂t −∆Mt)xi = 0 for all i = 1, . . . , N .

2. (∂t −∆Mt)|x|2 = −2n.

3. (∂t −∆Mt)(|x|2 + 2nt) = 0.

Proof of Lemma 5.11. First we prove part 1. Let ∂i = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in
the i-th position, i.e., ∂i is the canonical Euclidean basis of RN . Then ∇xi = ∂i and ∇2f = 0.
So by Lemma 5.5, ∆Mxi = −〈H,∇f〉. By Lemma 5.10, ∂txi = −〈∇f,H〉. Thus, we have
(∂t −∆M )xi = 0.
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To prove part 2, we note that ∇|x|2 = 2x and ∇2|x|2 = 2IN . So by Lemma 5.5, ∆M |x|2 =
∇2|x|2(ei, ei)− 〈H,∇f〉 = 2n− 〈H,∇f〉. By Lemma 5.10, ∂t|x|2 = −〈∇f,H〉. Thus, we have
(∂t −∆M )|x|2 = −2n.

To prove part 3, we note that ∇(|x|2 + 2nt) = 2x and ∇2(|x|2 + 2nt) = 2IN . So by
Lemma 5.5, ∆M (|x|2 +2nt) = 2n−〈H,∇f〉. By Lemma 5.10, ∂t(|x|2 +2nt) = −〈∇f,H〉+2n.
Thus, we have (∂t −∆M )(|x|2 + 2nt) = 0. �

Below we give several examples of the MCF.

Example 5.12 (Hyperplane). If M is an n-dimensional affine hyperplane, then H = 0, i.e.,
hyperplane is static solution of the MCF.

Example 5.13 (Evolving n-sphere). Using (242) in Example 5.7, we see that the mean curva-
ture of an n-sphere of radius r equals to

H =
n

r

x

|x|
.

By the definition x⊥t = −H of the MCF in (244), the MCF on n-spheres is governed by the
following ODE:

r′(t) = − n

r(t)
, (247)

where the right-hand side is the negative mean curvature of the n-sphere of radius r(t). Since
(r2)t = 2rtr = −2n for r := r(t), the solution of the ODE (247) is given by

r(t) =
√
r(0)− 2nt, (248)

which means that the solution of the MCF becomes extinct at a finite time t = r(0)
2t . In other

words, when t ↑ r(0)
2t , H →∞ so extinction point is a singularity of the flow.

Example 5.14 (Shrinking cylinder). Let

Mn
t = Sk√

C−2kt
× Rn−k ⊂ RN

be shrinking cylinders. Obviously, Mn
t contains shrinking spheres Sk√

C−2kt
and a Euclidean

factor Rn−k. Using Example 5.13, the extinction point is t = C
2k along the Euclidean factor

Rn−k.
Definition 5.15 (Minimal surface). A submanifold M is minimal if H = 0.

5.2 Parabolic maximum principle

Similarly as the linear heat equation in the Euclidean space (Section 2.2), the MCF also
satisfies the parabolic maximum principle.

Theorem 5.16 (Parabolic maximum principle of the MCF). Let Mt ⊂ RN be closed compact
submanifolds and (∂t −∆Mt)u = 0. Then the maximum of u is attained at t = 0, i.e.,

max
t>0,x∈Mt

u(x, t) = max
x∈M0

u(x, 0). (249)

There are several important consequence of the parabolic maximum principle of the MCF.
The first one is a convex hull property.
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Corollary 5.17 (Convex hull property). If Mn
t ⊂ RN is a compact MCF and

M0 ⊂ Ω := {x ∈ RN : xi < 0}, (250)

i.e., M0 lies in a half-space Ω, then Mt ⊂ Ω for t > 0.

Proof of Corollary 5.17. Since Mn
t is an MCF, by Lemma 5.11 (part 1),

(∂t −∆Mt)xi = 0.

By the parabolic maximum principle in Theorem 5.16, for each t > 0,

max
x∈Mt

xi 6 max
x∈M0

xi < 0.

This means that Mt ⊂ Ω for all t > 0. �

The next important consequence is a comparison principle that gives the estimate on
extinction time of the MCF.

Corollary 5.18 (Estimate on extinction time). If Mn
t ⊂ RN is a compact MCF and M0 ⊂ Br,

then Mt ⊂ B√r2−2nt and Mt becomes extinct in time at most r2

2n .

Remark 5.19. Corollary 5.18 implies that any closed submanifolds under the MCF becomes
extinct in finite time. In particular, the extinction time estimate r2

2n given in Corollary 5.18
is sharp in view of Example 5.13, where the extinction time for evolving n-spheres of radius
r at t = 0 is r2

2n . �

Proof of Corollary 5.18. Since Mn
t is an MCF, by Lemma 5.11 (part 3),

(∂t −∆Mt)(|x|2 + 2nt) = 0.

By the parabolic maximum principle in Theorem 5.16, for each t > 0,

max
Mt

(|x|2 + 2nt) 6 max
M0

|x|2 6 r2.

This means that for t > 0,

max
Mt

|x| 6
√
r2 − 2nt.

Thus when t = r2

2n , we have 0 6 maxMt |x| 6 0, which implies maxMt |x| = 0. �

5.3 Minimal surface equation

Let Ω ⊂ R2 and u : Ω→ R. Define the graph Γu associated with u is the set of points

Γu = {(x, y, u(x, y)) : (x, y) ∈ Ω}. (251)

We consider the minimal graph problem: given the boundary value u(∂Ω), we want to find a
u such that Γu has the least area. More specifically, we look at the minimal graph problem
in R3. Assume the existence of Γu.
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Theorem 5.20 (Minimal surface equation for graph in R3). Let Ω ⊂ R2 and u : Ω → R. Let
Γu be the graph associated with u. Fix the boundary value of u(∂Ω). If Γu has the least area,
then we have the following minimal surface equation

div

(
η∇u√

1 + |∇u|2

)
= 0 (252)

holds in the distribution sense.

Proof of Theorem 5.20. We look for the variation η : Ω → R with η(∂Ω) = 0 such that
(u + tη)(∂Ω) = u(∂Ω) for all t ∈ R. The area-minimality of Γu means that Area(t) :=
Area(Γu+tη) has a minimum at t = 0. Note that two tangent vectors on graph Γu can be
taken as

∂x 7→ (1, 0, ux),

∂y 7→ (0, 1, uy).

We remark that these two tangent vectors are linear independent, but may not be orthogonal.
Then the area of Γu can be computed as:

Area(Γu) =

∫
Ω
|(1, 0, ux)× (0, 1, uy)| dx dy,

where

u× v =

∣∣∣∣ u2 u3

v2 v3

∣∣∣∣ e1 −
∣∣∣∣ u1 u3

v1 v3

∣∣∣∣ e2 +

∣∣∣∣ u1 u2

v1 v2

∣∣∣∣ e3,

u = (u1, u2, u3), v = (v1, v2, v3), and (ei)
3
i=1 are the canonical basis of R3. Now since

(1, 0, ux)× (0, 1, uy) = −uxe1 − uye2 + e3

and
|(1, 0, ux)× (0, 1, uy)| =

√
u2
x + u2

y + 1,

we have for any function u(x, y),

Area(Γu) =

∫
Ω

√
u2
x + u2

y + 1 dx dy =

∫
Ω

√
|∇u|2 + 1 dx dy.

Applying the last equality to Γu+tη, we have

Area(t) =

∫
Ω

√
1 + |∇(u+ tη)|2 =

∫
Ω

√
1 + |∇u|2 + 2t〈∇u,∇η〉+ t2|∇η|2,

which gives

Area′(0) =
d

dt

∣∣∣∣
t=0

Area(t) =

∫
Ω

〈∇u,∇η〉√
1 + |∇u|2

.

Note that

div

(
η∇u√

1 + |∇u|2

)
=
〈∇u,∇η〉√
1 + |∇u|2

+ η div

(
η∇u√

1 + |∇u|2

)
.
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Since η(∂Ω) = 0, we have ∫
Ω

div

(
η∇u√

1 + |∇u|2

)
= 0.

Then,

Area′(0) = −
∫

Ω
η div

(
η∇u√

1 + |∇u|2

)
.

By the area-minimality (i.e., the first derivative test), we must have Γu, Area′(0) = 0. Since
η is arbitrary, we conclude (252). �

Theorem 5.21 (Bernstein). If u is an entire solution of the minimal surface equation in R2,
then u(x, y) = ax+ by + c, i.e., Γu is a plane in R3.

Remark 5.22. Bernstein’s theorem is true up to R7, it is false in R8. �

5.4 Huisken monotonicity

Define

Hb(x, t) = (−4πt)−N/2 exp

(
|x|2

4t

)
for x ∈ RN , t < 0. (253)

It is easy to check that Hb defined in (253) is the fundamental solution of the backward heat
equation:

(∂t + ∆)Hb(x, t) = 0. (254)

Let u : RN×(−∞, 0)→ R be a function u(x, t) solving the (forward) heat equation (∂t−∆)u =
0 on negative time line. For t < 0, observe that

d

dt

∫
RN

uHb =

∫
RN

utHb +

∫
RN

u(Hb)t =

∫
RN

(∆u)Hb −
∫
RN

u(∆Hb).

Then integration-by-parts give
d

dt

∫
RN

uHb = 0,

which means that
∫
RN uHb is constant in time t < 0. In addition, by the reproducing property

of the backward heat kernel,

lim
t↑0

∫
RN

uHb = u(0, 0).

Thus we have

u(0, 0) =

∫
RN

uHb for all t < 0, (255)

which is called Watson’s mean value property of the backward heat equation.
Now we consider Mn

t ⊂ RN flow by the MCF. Define Φ : RN × (−∞, 0)→ R as:

Φ(x, t) = (−4πt)−n/2 exp

(
|x|2

4t

)
for x ∈ RN , t < 0. (256)

Note that Φ and Hb differ in exponent (−4πt)−n/2 and (−4πt)−N/2.
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Theorem 5.23 (Huisken monotonicity). If Mt := Mn
t ⊂ RN flow by the MCF, then for all

t < 0,

d

dt

∫
Mt

Φ = −
∫
Mt

∣∣∣∣H +
x⊥

2t

∣∣∣∣2 Φ 6 0, (257)

with the equality attained if and only if x⊥t = −H = x⊥

2t .

To prove the Huisken monotonicity, we need the following lemma.

Lemma 5.24. If Mt := Mn
t ⊂ RN flow by the MCF, then

(∂t + ∆Mt)Φ = |H|2Φ−
∣∣∣∣H +

x⊥

2t

∣∣∣∣2 Φ. (258)

Proof of Theorem 5.23. By the first variation formula of volume in Lemma 5.6,

d

dt

∣∣∣
t=0

Vol(Mt,v) =

∫
M
〈v, H〉,

where Mt,v = {x+ tv(x) : x ∈M}. This implies for an MCF Mn
t that

d

dt
dVol(Mt) = 〈xt, H〉 dVol(Mt) = −〈H,H〉 dVol(Mt) = −|H|2 dVol(Mt).

Integrating and using the chain rule to get

d

dt

∫
Mt

Φ =
d

dt

∫
Φ dVol(Mt) =

∫
Mt

∂tΦ−
∫
Mt

|H|2Φ.

Applying Lemma 5.24, we get∫
Mt

∂tΦ =

∫
Mt

(
|H|2Φ−

∣∣∣∣H +
x⊥

2t

∣∣∣∣2 Φ−∆MtΦ

)
.

Combining the last two displays, we have

d

dt

∫
Mt

Φ = −
∫
Mt

∣∣∣∣H +

∫
Mt

x⊥

2t

∣∣∣∣2 Φ−
∫
Mt

∆MtΦ = −
∫
Mt

∣∣∣∣H +

∫
Mt

x⊥

2t

∣∣∣∣2 Φ,

where we used Stokes’ theorem in the last equality. �

Proof of Lemma 5.24. Denote ∇ and ∇2 as the Euclidean covariant derivative and Hessian
in RN , respectively. Denote ∇Mt as the covariant derivative on Mt. For t < 0, direct

calculation yields log Φ(x, t) = −n
2 log(−4πt) + |x|2

4t , ∇ log Φ = x
2t ,∇

2 log Φ = 1
2tIN , and

∂
∂t log Φ = − n

2t −
|x|2
4t2

. For smooth functions u(x, t) and f : R→ R, we compute

(∂t + ∆Mt)f(u) = f ′(u)∂tu+ divMt(∇Mtf(u))

= f ′(u)∂tu+ divMt(f
′(u)∇Mtu)

= f ′(u)∂tu+ f ′(u)divMt(∇Mtu) + f ′′(u)〈∇Mtu,∇Mtu〉
= f ′(u)(∂tu+ ∆Mtu) + f ′′(u)|∇Mtu|2.
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Applying u = log Φ and f(u) = eu, we see that f(u) = f ′(u) = f ′′(u) = eu and

(∂t + ∆Mt)Φ = Φ
[
(∂t + ∆Mt) log Φ + |∇Mt log Φ|2

]
(259)

Next we compute the right-hand side of (259) with Mt flowing by the MCF. By Lemma 5.10,

∂t log Φ = −〈∇ log Φ, H〉+
∂

∂t
log Φ = −〈 x

2t
,H〉 − n

2t
− |x|

2

4t2
.

By Lemma 5.5,

∆Mt log Φ = ∇2 log Φ(ei, ei)− 〈H,∇ log Φ〉 =
n

2t
− 〈H, x

2t
〉.

Adding the last two equations, we get

(∂t + ∆Mt) log Φ = −|x|
2

4t2
− 2〈H, x

2t
〉.

Moreover, note that

∇Mt log Φ = ∇> log Φ =
x>

2t
.

So we have

|∇Mt log Φ|2 =

∣∣∣∣x>2t
∣∣∣∣2 =

∣∣∣ x
2t

∣∣∣2 − ∣∣∣∣x⊥2t
∣∣∣∣2 =

|x|2

4t2
− |x

⊥|2

4t2
.

Putting all pieces together, we see that

(∂t + ∆Mt) log Φ + |∇Mt log Φ|2 = −|x|
2

4t2
− 2〈H, x

2t
〉+
|x|2

4t2
− |x

⊥|2

4t2
= −2〈H, x

2t
〉 − |x

⊥|2

4t2
.

Filling the last equality into (259) and completing the square, we get

(∂t + ∆Mt)Φ = Φ

[
−2〈H, x

2t
〉 − |x

⊥|2

4t2

]
= Φ

[
|H|2 −

∣∣∣∣H +
x⊥

2t

∣∣∣∣2
]
.

�

5.5 Gaussian area and entropy

Definition 5.25 (Gaussian area). For a submanifold M := Mn ⊂ RN , the Gaussian area (or
sometimes also called Gaussian volume) of M is defined as

F (M) = (4π)−n/2
∫
M
e−|x|

2/4. (260)

Note that the normalization constant (4π)−n/2 in Definition 5.25 makes F = 1 for any
n-plane through the origin in RN .

Definition 5.26 (Entropy). For a submanifold M := Mn ⊂ RN , the entropy of M is defined
as

λ(M) = sup
s>0,x0∈RN

F (sM + x0). (261)
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Obviously, λ(M) > 0. In fact, λ(M) > 1 for any submanifold M .

Remark 5.27 (Invariance of entropy). By definition, the entropy λ in (261) is invariant under
translation and scaling, i.e., for any s > 0 and y0 ∈ RN , we have λ(M) = λ(sM + y0). In
addition, λ is also invariant under rotations because the Gaussian weight in (260) satisfies
e−|x|

2/4 = e−|Qx|
2/4 for any N ×N rotation matrix Q. �

Theorem 5.28 (Entropy monotonicity). If Mt := Mn
t ⊂ RN flows by the MCF, then λ(Mt)

is non-increasing in t. So λ(Mt) is a Lyapunov function (i.e., a monotone quantity along the
flow).

Proof of Theorem 5.28. �

5.6 Shrinkers

A Multivariable calculus

A.1 Divergence theorem

Theorem A.1 (Divergence theorem on a bounded domain). Let Ω ⊂ Rn and v is a vector field
on Ω. Then ∫

Ω
div(v) =

∫
∂Ω
〈v,n〉, (262)

where n is the outer unit normal of Ω.

Corollary A.2. If η : Rn → R is a cutoff function such that η ≡ 0 on ∂Ω, then∫
Ω

div(ηv) =

∫
∂Ω
〈ηv,n〉 = 0, (263)

where n is the outer unit normal of Ω.

Lemma A.3 (Integration-by-parts: no boundary term). Let v be a vector field on Ω ⊂ Rn and
η : Rn → R be a cutoff function such that η ≡ 0 on ∂Ω. Then∫

Ω
η div(v) = −

∫
Ω
〈∇η, v〉. (264)

Proof of Lemma A.3. By the chain rule,

div(ηv) = 〈∇η, v〉+ η div(v). (265)

Applying Corollary A.2, we have

0 =

∫
Ω

div(ηv) =

∫
Ω
〈∇η, v〉+ η div(v). (266)

�

Theorem A.4 (Divergence theorem on manifolds).∫
Ω

div(v) dVol =

∫
∂Ω
〈v,n〉dσ, (267)

where dVol is the volume element of Ω and dσ is the surface/boundary measure of ∂Ω.
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B Stochastic calculus

B.1 Itô’s formula

Lemma B.1 (Itô’s formula). Let f : Rn×R→ R be a twice differentiable function and (Xt)t>0

is an n-dimensional Itô process

dXt = m(Xt, t) dt+ σ(Xt, t) dWt, (268)

where (Wt)t>0 is the standard Brownian motion in Rn. Then,

df(Xt, t) =

[
∂f

∂t
+ 〈∇f,m〉+

1

2
tr
(
σT∇fσ

)]
dt+ 〈∇f, σ dWt〉. (269)

C Some functional inequalities

In this section, we present some useful functional inequalities.

C.1 Logarithmic Sobolev inequalities

A probability measure π is said to satisfy the logarithmic Sobolev inequality (LSI) if there
exists a κ > 0 such that for any ν ∈ P(Rn) and π � ν,

H(ν‖π) 6
1

2κ
I(ν‖π). (270)

We first discuss some Gaussian Sobolev inequalties. Let γ be the standard Gaussian
measure on Rn, i.e., γ(x) = (2π)−n/2 exp(−|x|2/2).

Lemma C.1 (Gaussian LSI: information-theoretic version). For any ν ∈ P(Rn) and γ � ν,

H(ν‖γ) 6
1

2
I(ν‖γ). (271)

From Lemma C.1, we see that the standard Gaussian measure γ satisfies the LSI with
κ = 1. The equality in (271) is achieved if ν is a translation of γ. To see this, take

ν(x) = (2π)−n/2 exp
(
− |x− y|

2

2

)
, y ∈ Rn. (272)

Then

H(ν‖γ) =

∫
log
(ν
γ

)
dν =

∫
−1

2
(|x− y|2 − |x|2) dν

=

∫
〈x, y〉 dν − 1

2

∫
|y|2 dν = |y|2 − 1

2
|y|2 =

1

2
|y|2. (273)

On the other hand, since γ � ν, we have

ρ(x) =
dν

dγ
= exp

(
− |x− y|

2

2
+
|x|2

2

)
= exp(〈x, y〉) exp

(
− |y|

2

2

)
(274)
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and

∇ρ(x) = y exp(〈x, y〉) exp
(
− |y|

2

2

)
= yρ. (275)

Then

I(ν‖γ) =

∫
|y|2ρ2

ρ
dγ =

∫
|y|2ρdγ = |y|2. (276)

Combining (273) and (276), we conclude H(ν‖γ) = 1
2I(ν‖γ). In fact, translation is the

only case that is currently known to achieve the equality case. Hence we pose the following
conjecture.

Conjecture C.2 (Characterization of the equality case in the Gaussian LSI). The equality case
H(ν‖γ) = 1

2I(ν‖γ) in the Gaussian LSI is achieved if and only if ν is a translation of γ, i.e.,
ν(x) = γ(x+ y) for some y ∈ Rn.

Lemma C.3 (Gaussian LSI: functional version). Let f : Rn → R be a smooth function such
that f > 0 and

∫
f2 dγ = 1. Then∫

f2 log f dγ 6
∫
|∇f |2 dγ. (277)

Equivalently, we can write

Entγ(f2) 6 2

∫
|∇f |2 dγ, (278)

where Entγ(g) =
∫
g log g dγ is the entropy of the probability density g > 0.

It is easy to see that Lemma C.3 and C.1 are equivalent. Let g = f2. Then ∇g = 2f∇f
and ∇f = 1

2
√
g∇g. Note that (277) is equivalent to∫

g log g dγ 6 2

∫ ∣∣∣ 1

2
√
g
∇g
∣∣∣2 dγ =

1

2

∫
|∇g|2

g
dγ. (279)

Since g > 0 and
∫
g = 1, we can define a probability measure µ such that dµ

dγ = g. Then (279)
can be written as

H(µ‖γ) 6
1

2
I(µ‖γ). (280)

Since g is arbitrary, the equivalence between Lemma C.3 and C.1 follows.
There are Euclidean LSIs and the following Lemma C.4 is a version with sharp constant.

Lemma C.4 (Euclidean LSI). Let f : Rn → R be a smooth function such that
∫
f2 dx = 1.

Then ∫
f2 log f2 dx 6

n

2
log
( 2

nπe

∫
|∇f |2 dx

)
. (281)

Lemma C.5 (Sobolev inequality). Let f : Rn → R be a smooth function with compact support.
Then for all n > 3, ∫

|f |
2n
n−2 6 C(n)

∫
|∇f |2, (282)

where

C(n) =
1

n(n− 2)

( Γ(n)

Γ(n/2)

) 2
n
> 2. (283)
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Note that the Gaussian LSIs (Lemma C.1 and C.3) are dimension-free inequalities, while
the Euclidean LSI (Lemma C.4) and Sobolev inequality (Lemma C.5) are not. The con-
stants in (281) and (282) are both sharp. Indeed, direct computation gives the constant 2

nπe
from (283). Let m = nk and k →∞ and take a function f : Rnk → R such that

∫
f2 dx = 1.

Then

C(m) =
1

πnk(nk − 2)

( Γ(nk)

Γ(nk/2)

) 2
nk ∼ 2

1
nk

πn2k2

2nk

e
∼ 2

nkπe
=

2

mπe
, (284)

where we used Stirling’s approximation

(nk)! ∼
√

2πnk
(nk
e

)nk
. (285)

C.2 Talagrand’s transportation inequalities

D Riemannian geometry

In this section, we collect some basic facts and results about Riemannian geometry.

D.1 Smooth manifolds

Definition D.1 (Topological manifold). A topological space (M,O) is said to be an n-dimensional
topological manifold if for any p ∈M , there is an open set U ∈ O containing p such that there
exists a map x : U → x(U) ⊂ Rn (equipped with the standard topology on Rn) satisfying: (i)
x is invertible, i.e., there is a map x−1 : x(U)→ U ; (ii) x is continuous; (iii) x−1 is continuous.
In other words, x is a homeomorphism between U and x(U).

The pair (U, x) in Definition D.1 is called a chart and x is called the chart map. For p ∈ U
and x(p) = (x1(p), . . . , xn(p)), xi(p) is the i-th coordinate of x(p). An atlas is a collection of
charts A = {(Uα, xα) : α ∈ A} such that M = ∪α∈AUα.

For two charts (U, x) and (V, y) such that U ∩ V 6= ∅, the map y ◦ x−1 : Rn ⊃ x(U ∩ V )→
y(U∩V ) ⊂ Rn is said to be the chart transition map. We say (U, x) and (V, y) are ♣-compatible
if either U ∩ V = ∅, or U ∩ V 6= ∅ if the chart transition maps y ◦ x−1 : x(U ∩ V )→ y(U ∩ V )
and x ◦ y−1 : y(U ∩ V ) → x(U ∩ V ) has certain ♣-property (as a map from Rn to Rn).
For instance, the ♣-property can be C0(Rn), C1(Rn), . . . , C∞(Rn), and so on. An atlas A is
♣-compatible if the transition maps between any two charts in A have the ♣-property.

Definition D.2 (Smooth manifold). A smooth manifold (M,O,A) is a topological manifold
(M,O) equipped with a C∞(Rn)-compatible atlas A.

In these notes, we shall only consider smooth manifolds unless otherwise indicated.

Definition D.3 (Smooth functions on manifold). Let (M,O,A) be a smooth manifold. A
function f : M → R is said to be a smooth map (or C∞-map) if f ◦ y−1 : Rn → R is smooth
for every chart y in the atlas A.

According to Definition D.3, the coordinate functions x1, . . . , xn of any chart (U, x) in a
C∞-compatible atlas are all smooth maps.

A map φ : M → N is smooth if there is a chart (U, x) in M and a chart (V, y) in N such
that φ(U) ⊂ V and the map y ◦ φ ◦ x−1 : Rm ⊃ x−1(U)→ y(V ) ⊂ Rn is C∞.
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Definition D.4 (Diffeomorphism). Let (M,OM ,AM ) and (N,ON ,AN ) are two smooth mani-
folds. We say that (M,OM ,AM ) and (N,ON ,AN ) are diffeomorphic if there exists a bijection
φ : M → N such that φ : M → N and φ−1 : N →M are both smooth maps.

D.2 Tensors

Let (V,+, ·) be a vector space and (V ∗,⊕,�) be the dual space, where

V ∗ = {φ : V
∼−→ R} =: Hom(V,R) (286)

is the set of linear functionals on V . An element φ ∈ V ∗ is called a covector.

Definition D.5 (Tensor). Let (V,+, ·) be a vector space and r, s ∈ N0 := {0, 1, . . . }. An
(r,s)-tensor T over V is an R-multi-linear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
r times

×V × · · · × V︸ ︷︷ ︸
s times

∼−→ R. (287)

By Definition D.5, a covector φ ∈ V ∗ is a (0, 1)-tensor over V . If dim(V ) < ∞, then
V ∼= (V ∗)∗ is an isomorphism so that v ∈ V can be identified as a linear map V ∗

∼−→ R, which
means that v is a (1, 0)-tensor.

Let V be an n-dimensional vector space with an (arbitrarily chosen) basis (e1, . . . , en).
Then the dual basis (ε1, . . . , εn) for V ∗ is uniquely determined by

εi(ej) = δij , (288)

where δij = 1 if i = j, and δij = 0 if i 6= j.

Definition D.6 (Components of tensor). Let T be an (r, s)-tensor over an n-dimensional vector
space V such that n <∞. Let (e1, . . . , en) be a basis of V and (ε1, . . . , εn) be the dual basis
of V ∗. Then the components of T w.r.t. the chosen basis are defined as the (r + s)n real
numbers (or sometimes called coefficients)

T i1,...,ir j1,...,js = T (εi1 , . . . , εir , ej1 , . . . , ejs) (289)

for i1, . . . , ir, j1, . . . , js ∈ {1, . . . , n}.
As an example, consider a (1, 1)-tensor T with components given by T ij = T (εi, ej). Then

for any v ∈ V and φ ∈ V ∗, we can express

T (φ, v) = T
( n∑
i=1

φiε
i,

n∑
j=1

vjej

)
=

n∑
i=1

n∑
j=1

φiv
jT (εi, ej) =

n∑
i=1

n∑
j=1

φiv
jT ij . (290)

Thus components fully determine the tensor (given the basis). To avoid write too many sums,
we typically use the Einstein summation convention:

T (φ, v) = φiv
jT ij , (291)

where the repeated up-and-down indices i and j are summed over.
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D.3 Tangent and cotangent spaces

Definition D.7 (Velocity). Let (M,O,A) be a smooth manifold and γ : R → M be a curve
(at least C1). Let p ∈ M and γ(t0) = p for some t0 = p. The velocity of γ at p is the linear
map defined as

vγ,p : C∞(M)
∼−→ R,

f 7→ vγ,p(f) = (f ◦ γ)′(t0). (292)

Note that (C∞(M),⊕,�) forms a vector space equipped with (f ⊕ g)(p) = f(p) + g(p)
and (λ � g)(p) = λ · g(p). Note further that (C∞(M),⊕,�) is not only a vector space, it is
also a ring. However, (C∞(M),⊕,�) is not a field!

Definition D.8 (Tangent vector space). Let (M,O,A) be a smooth manifold. For each p ∈M ,

TpM :=
{
vγ,p : γ is a smooth curve in M

}
(293)

is the tangent space to M at p.

Intuitively, we may understand the velocity vγ,p (i.e., a tangent vector in TpM) as the
directional derivative along the curve γ at p. The following Lemma D.9 confirms that the
tangent space TpM is indeed a vector space.

Lemma D.9. For each p ∈M , TpM is a vector space of linear maps from C∞(M) to R.

Proof of Lemma D.9. We shall define ⊕ and � to make (TpM,⊕,�) a vector space. For
f ∈ C∞(M), we define

⊕ : TpM × TpM → Hom(C∞(M),R),

(vγ,p ⊕ vδ,p)(f) = vγ,p(f) + vδ,p(f), (294)

and

� : R× TpM → Hom(C∞(M),R),

(s� vγ,p)(f) = s · vγ,p(f). (295)

We still need to show that there are smooth curves σ and τ such that vσ,p = vγ,p ⊕ vδ,p and
vτ,p = s� vγ,p. We first construct the curve τ via

τ : R→M,

t 7→ τ(t) = γ(st+ t0) =: γ ◦ µs(t), (296)

where µs(t) = st+ t0. Now τ(0) = γ(t0) = p and by the chain rule,

vτ,p(f) = (f ◦ τ)′(0) = (f ◦ γ ◦ µs)′(0) = µ′s(0) · (f ◦ γ)′(µ′s(0))

= s · (f ◦ γ)′(t0) = s · vγ,p(f) = (s� vγ,p)(f).
(297)

Next choose a chart (U, x) such that p ∈ U , and define

σx : R→M,

t 7→ σx(t) = x−1((x ◦ γ)(t0 + t) + (x ◦ δ)(t1 + t)− (x ◦ γ)(t0)), (298)
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where γ(t0) = δ(t1) = p. Then σx(0) = p and by the chain rule,

vσx,p(f) = (f ◦ σx)′(0) =
(
(f ◦ x−1) ◦ (x ◦ σx)

)′
(0)

=
(
(x ◦ σx)i

)′
(0) ·

(
∂i(f ◦ x−1)

)
(x(σx(0)))

=
((

(x ◦ γ)i
)′

(t0) +
(
(x ◦ δ)i

)′
(t1)
)
·
(
∂i(f ◦ x−1)

)
(x(p))

=
((

(x ◦ γ)i
)′

(t0)
)
·
(
∂i(f ◦ x−1)

)
(x(p)) +

((
(x ◦ δ)i

)′
(t1)
)
·
(
∂i(f ◦ x−1)

)
(x(p))

=
(
(f ◦ x−1) ◦ (x ◦ γ)

)′
(t0) +

(
(f ◦ x−1) ◦ (x ◦ δ)

)′
(t1)

= (f ◦ γ)′(t0) + (f ◦ δ)′(t1) = vγ,p(f) + vδ,p(f) = (vγ,p ⊕ vδ,p)(f),

(299)

which the last line does not depend on the choice of the chart (U, x). �

Notation. In the proof of Lemma D.9, we have seen that for a curve γ : R → M such
that γ(0) = p, where (U, x) is a chart containing p,

vγ,p(f) =
(
(x ◦ γ)i

)′
(0)︸ ︷︷ ︸

=:γ̇ix(0)

·
(
∂i(f ◦ x−1)

)
(x(p))︸ ︷︷ ︸

=:

(
∂f

∂xi

)
p

, f : M → R smooth, (300)

where we reserve ∂ig as the j-th Euclidean partial derivative of the function g : Rn → R.
Thus we write the velocity vector vγ,p ∈ TpM as a linear map from C∞(M) to R defined as

vγ,p = γ̇ix(0)
( ∂

∂xi

)
p
, (301)

where
(

∂
∂xi

)
p

is the chart-induced basis of TpM and γ̇ix(0) are the components of vγ,p w.r.t.

the chart-induced basis. We emphasize that
(
∂f
∂xi

)
p

in (301) are not partial derivatives of

f because it does not make sense to speak of partial derivatives for a function defined on a

manifold where there is no global canonical basis such as in Rn. Once we see
(
∂f
∂xi

)
p
, we need

always to translate back to its definition in (300).

Lemma D.10 (Chart-induced basis of tangent space). Let (M,O,A) be a smooth manifold
and (U, x) be a chart in A that contains p. Then( ∂

∂x1

)
p
, . . . ,

( ∂

∂xn

)
p

(302)

form a basis of TpU . In particular, dim(TpM) = d = dim(M), where dim(TpM) is the vector
space dimension of TpM and dim(M) is the dimension of the topological manifold (M,O).

Proof of Lemma D.10. We have shown in (301) that every vγ,p ∈ TpU can be expressed as a

linear combination of
(

∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p
. It remains to show that these vectors are linearly

independent. Since A is a C∞(Rn)-compatible atlas, xj : U → R is smooth. By (300),

αi
( ∂

∂xi

)
p
(xj) = αi

(
∂i(x

j ◦ x−1)
)
(x(p)) = αiδji = αj , (303)
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since xj ◦ x−1 : Rn → R such that (xj ◦ x−1)(c1, . . . , cn) = cj . If

0 = αi
( ∂

∂xi

)
p
, (304)

then αj = 0 for all j = 1, . . . , n, which means that the chart-induced basis vectors in (302)
are linearly independent. �

Definition D.11 (Cotangent space). The cotangent space T ∗pM is the dual space of TpM , i.e.,

T ∗pM = {φ : TpM
∼−→ R} (305)

contains the set of linear functionals on TpM .

Example D.12 (Gradient is a covector in the cotangent space). Let f ∈ C∞(M) and consider

(df)p : TpM
∼−→ R,

X 7→ (df)p(X) = Xf, for X ∈ TpM. (306)

We call (df)p is the gradient of f at p ∈ M . Clearly (df)p ∈ T ∗pM (i.e., (df)p is a covector)
and it is a (0, 1)-tensor over the vector space TpM . Thus the components of (df)p w.r.t. the
chart-induced basis by (U, x) (cf. (289)) is given by

(
(df)p

)
j

= (df)p

(( ∂

∂xj

)
p

)
=
( ∂f
∂xj

)
p

for j = 1, . . . , n. (307)

The interpretation of gradient is as follows. The directional derivative Xf of f along a
tangent vector X at p is the gradient (df)p evaluated at X. Thus gradient (df)p gives the
information of directional derivatives of f along all possible tangent vectors at such point p.

Lemma D.13 (Dual basis of cotangent space). Let (M,O,A) be a smooth manifold and (U, x)
be a chart in A that contains p, where xj : U → R is the j-th coordinate of x. Then

(dx1)p, . . . , (dx
n)p (308)

form a dual basis of T ∗pM w.r.t. the basis
(

∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p

of TpM .

Proof of Lemma D.13. The lemma follows from

(dxi)p

( ∂

∂xj

)
p

=
(∂xi
∂xj

)
p

= δij (309)

and the dual basis definition in (288). �

Now suppose we have two charts (U, x) and (V, y) such that U ∩ V 6= ∅. Take a point
p ∈ U ∩ V and a tangent vector X ∈ TpM . Then we may express X in the two charts using
different local coordinate systems:

X = Xi
x

( ∂

∂xi

)
p

= Xj
y

( ∂

∂yj

)
p
. (310)
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Let f ∈ C∞(M). Applying the (multi-variable) chain rule, we compute( ∂

∂xi

)
p
f = ∂i(f ◦ x−1)(x(p)) = ∂i

(
(f ◦ y−1) ◦ (y ◦ x−1)

)
(x(p))

= ∂i(y
j ◦ x−1)(x(p)) ·

(
∂j(f ◦ y−1)

)
(y(p))

=
(∂yj
∂xi

)
p

( ∂f
∂yj

)
p
. (311)

Thus the last two displays imply that

Xi
x

(∂yj
∂xi

)
p

( ∂

∂yj

)
p

= Xj
y

( ∂

∂yj

)
p
. (312)

Since
(

∂
∂yj

)
p

is a basis vector, we obtain the formula for the change of vector components

under a change of chart given by

Xj
y =

(∂yj
∂xi

)
p
Xi
x, (313)

which is a linear map at the given point p. However, we should emphasize that the global
chart transformation is nonlinear.

We can also derive a formula for change of covector components under a change of chart.
Let ω ∈ T ∗pM . Then we may write

ω = ω(x)i(dx
i)p = ω(y)j(dy

j)p. (314)

By similar computations in the tangent space, one can show that

ω(y)j =
(∂xi
∂yj

)
p
ω(x)i (315)

and the matrix
(
∂xi

∂yj

)
p

is the inverse of the matrix
(
∂yj

∂xi

)
p
.

D.4 Tangent bundles and tensor fields

We have defined the tangent and cotangent spaces at a given point p ∈M in Section D.3. In
this section, we consider the field extension of these concepts to the whole manifold based on
the theory of bundles.

Definition D.14 (Bundle and fiber). A bundle is a triple (E,M, π) such that

π : E →M, (316)

where E is a smooth manifold (“total space”), M is a smooth manifold (“base space”), and π
is a surjective smooth map (“projection map”). For p ∈ M , the fiber over p is the pre-image
π−1(p) of {p}.

78



Consider a smooth n-dimensional manifold (M,O,A). Let

TM =
⊔
p∈M

TpM (317)

be a total space and π : TM → M be the surjective map defined via X 7→ p where p is the
unique point in M such that X ∈ TpM . We would like first to turn TM into a topological
manifold such that π is continuous. We consider the coarsest topology:

OTM = {π−1(U) : U ∈ O}, (318)

which is sometimes also referred as the initial topology w.r.t. π.
Next we need to construct a C∞-atlas on TM from the C∞-atlas on M . Let

ATM = {(TU, ξx) : (U, x) ∈ A}, (319)

where the chart map ξx : TU → R2n is defined as

X 7→ ξx(X) =
(

(x1 ◦ π)(X), . . . , (xn ◦ π)(X)︸ ︷︷ ︸
(U,x)-coordinates of base point π(X)

, (dx1)π(X)(X), . . . , (dxn)π(X)(X)︸ ︷︷ ︸
components of Xw.r.t. (U,x)

)
. (320)

Note that

ξ−1
x : ξx(TU)→ TU,

(a1, . . . , an, b1, . . . , bn) 7→
(
b1
( ∂

∂x1

)
x−1(a1,...,an)

, · · · , bn
( ∂

∂xn

)
x−1(a1,...,an)

)
,(321)

where x−1(a1, . . . , an) = π(X) is the base point. Then we need to check that the atlas ATM
is smooth. Let (U, x) and (V, y) be two charts in A such that U ∩ V 6= ∅. Combining (320)
and (321), we can compute the chart transition map from R2n to R2n in ATM as following:

(ξy ◦ ξ−1
x )(a1, . . . , an, b1, . . . , bn) = ξy

(
bj
( ∂

∂xj

)
x−1(a1,...,an)

)
=
(
. . . , (yi ◦ π)

(
bj
( ∂

∂xj

)
x−1(a1,...,an)

)
, . . . , . . . , (dyi)x−1(a1,...,an)

(
bj
( ∂

∂xj

)
x−1(a1,...,an)

)
. . .
)

=
(
. . . , (yi ◦ x−1)(a1, . . . , an), . . . , . . . , bj

( ∂yi
∂xj

)
x−1(a1,...,an)

, . . .
)
.

(322)
Note that (yi ◦ x−1)(a1, . . . , an) is just the i-th coordinate of chart transition map of A and( ∂yi

∂xj

)
x−1(a1,...,an)

= ∂j(y
i ◦ x−1)(x(x−1(a1, . . . , an)))) = ∂j(y

i ◦ x−1)(a1, . . . , an)). (323)

Since y ◦ x−1 is smooth, it follows that ξy ◦ ξ−1
x is also smooth. Thus (TM,OTM ,ATM ) is

a smooth manifold. Because π is a projection from TM to M , both of which are smooth
manifolds, we conclude that π is a smooth map. Thus the triple (TM,M, π) has a bundle
structure, which is referred as the tangent bundle.

Definition D.15 (Tangent bundle). For a smooth manifold (M,O,A), the triple (TM,M, π)
is called the tangent bundle. For simplicity, we sometimes call TM the tangent bundle.
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Why do we care about tangent bundles? The reason is that any smooth vector field on a
smooth manifold M can be represented as a smooth section of the tangent bundle (TM,M, π).

Definition D.16 (Section). Let (E,M, π) be a bundle. A section σ of the bundle is a map
χ : M → E such that π ◦ χ = idM , where idM is the identity map on M .

Recall that (C∞(M),⊕,�) is not only a vector space, it is also a ring. Here we slightly
abuse the notation by denoting this ring as (C∞(M),+, ·). Define

Γ(TM) = {χ : M → TM : χ is a smooth section}. (324)

The key idea is that one can think of Γ(TM) as a collection of smooth vector fields on M .
Note that χ : M → TM such that p 7→ χ(p) ∈ TpM . Thus given a smooth map f ∈ C∞(M),
we can view χf : M → R defined via p 7→ χ(p)f ∈ R. In words, a smooth vector field
χ ∈ Γ(TM) on M acting on a smooth function f ∈ C∞(M) gives another smooth function
χf ∈ C∞(M).

Now we want to give more algebraic structures to the set Γ(TM). Let χ, χ̃ ∈ Γ(TM) be
two smooth vector fields on M and f, g ∈ C∞(M). Define

(χ⊕ χ̃)(f) = χf + χ̃f, (325)

(g � χ)(f) = g · χ(f). (326)

Then (Γ(TM),⊕,�) would be a vector space, if C∞(M) is a field. However, C∞(M) is only a
ring, so this makes (Γ(TM),⊕,�) a C∞(M)-module. Informally, we call Γ(TM) is “tangent
field.”

Similarly, one can consider the vector fields on the cotangent bundle T ∗M and construct
the section Γ(T ∗M) as a C∞(M)-module. In words, an element in Γ(T ∗M) takes a vector field
in Γ(TM) and it produces a smooth function in C∞(M). Informally, we also call Γ(T ∗M)
“cotangent field.”

Definition D.17 (Tensor field). An (r, s)-tensor field T over Γ(TM) is a C∞(M)-multi-linear
map

T : Γ(T ∗M)× · · · × Γ(T ∗M)︸ ︷︷ ︸
r times

×Γ(TM)× · · · × Γ(TM)︸ ︷︷ ︸
s times

∼−→ C∞(M). (327)

By convention, a (0, 0)-tensor field is a smooth function C∞(M).

In the language of tensor field, an element of the cotangent field Γ(T ∗M) is a (0, 1)-tensor
field, which takes a vector field in Γ(TM) and produces a smooth function in C∞(M). Below
we give such an example.

Example D.18 (Gradient tensor field as a cotangent field). The C∞(M)-linear map

df : Γ(TM)
∼−→ C∞(M),

χ 7→ df(χ) := χf, (328)

where as before (χf)(p) = χ(p)f gives the directional derivative of f along the vector χ(p)
at p, is the (0, 1)-tensor field over the smooth vector fields Γ(TM) on M . In other words,
the gradient tensor field df gives the gradients of f (on the whole manifold M) along all
possible smooth vector fields χ, whereas we recall that the gradient (df)p gives the directional
derivatives of f along all possible tangent vectors at a given point p.
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D.5 Connections and curvatures

Let X ∈ Γ(TM) be a smooth vector field on M . (Note that we slightly change the notation
for a vector field from χ in Appendix D.4 to X.)

In this section, we wish to extend the notion of directional derivative X : C∞(M) →
C∞(M) defined through (Xf)(p) = X(p)f for p ∈ M to the notion of connections on tensor
fields (cf. Example D.12 and D.18), which allows us to define straight lines and eventually
leads to curvatures.

Definition D.19 (Connection). A connection (sometimes also referred as affine connection) ∇
on a smooth manifold (M,O,A) is a map taking a pair of a vector (field) X on M and an
(r, s)-tensor field T over Γ(TM) and sending them to an (r, s)-tensor (field) ∇XT , satisfying:

1. ∇Xf = Xf for f ∈ C∞(M) (i.e., f is a (0, 0)-tensor);

2. Additivity (in T ): for (r, s)-tensor fields T and S,

∇X(T + S) = ∇XT +∇XS; (329)

3. Leibniz rule (in T ): for ω ∈ Γ(T ∗M), Y ∈ Γ(TM), and (1, 1)-tensor field T ,

∇X(T (ω, Y )) = (∇XT )(ω, Y ) + T (∇Xω, Y ) + T (ω,∇XY ); (330)

4. C∞(M)-linearity (in X): for f ∈ C∞(M),

∇fX+ZT = f∇XT +∇ZT. (331)

We say ∇XT is the covariant derivative of T in the direction of X.

Remark D.20 (Remark on the Leibniz rule). First, the Leibniz rule (330) is equivalent to the
tensor product form. Let T be a (p, q)-tensor field and S be an (r, s)-tensor field. The tensor
product T ⊗ S of T and S is defined as the (p+ r, q + s)-tensor field such that

(T ⊗ S)(ω1, . . . , ωp+r, X1, . . . Xq+s)

= T (ω1, . . . , ωp, X1, . . . , Xq) · S(ωp+1, . . . , ωp+r, Xq+1, . . . , Xq+s),
(332)

for ω1, . . . , ωp+r ∈ Γ(T ∗M) and X1, . . . , Xq+s ∈ Γ(TM). Then the Leibniz rule (330) can be
expressed in terms of the tensor product:

∇X(T ⊗ S) = (∇XT )⊗ S + T ⊗ (∇XS). (333)

Second, the Leibniz rule (330) can defined on higher-order tensors, which are useful to
describe curvatures of smooth manifolds. For instance, for (1, 2)-tensor T , the Leibniz rule in
T becomes

∇X(T (ω, Y, Z)) = (∇XT )(ω, Y, Z) +T (∇Xω, Y, Z) +T (ω,∇XY,Z) + +T (ω, Y,∇XZ). (334)

�
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Now we can equip a smooth manifold with an additional connection structure. A smooth
manifold with connection is a quadruple of structures (M,O,A,∇). Intuitively, one can think
of ∇X is an extension of the directional derivative X and ∇ is an extension of the differential
d, where both extensions are seen from smooth functions to tensor fields.

How many ways can we determine the connection ∇ on a smooth manifold (M,O,A)? It
turns out the degree of freedom (without putting extra structures) is high. Actually there are
infinitely many connections can be given on a smooth manifold.

To see this, let X and Y be vector fields on M . Take a chart (U, x) and note that
∂
∂x1 , . . . ,

∂
∂xn are (1, 0)-tensor fields (through an isomorphic identification). By the C∞(M)-

linearity (331) and the Leibniz rule (333) (in the tensor product form), we may compute

∇XY = ∇Xi ∂

∂xi

(
Y j ∂

∂xj

)
= Xi∇ ∂

∂xi

(
Y j ∂

∂xj

)
= Xi

(
∇ ∂

∂xi
Y j
)( ∂

∂xj

)
+XiY j

(
∇ ∂

∂xi

( ∂

∂xj

))
= Xi

(∂Y j

∂xi

) ∂

∂xj
+XiY j ∇ ∂

∂xi

( ∂

∂xj

)
︸ ︷︷ ︸

=:Γkji
∂

∂xk

,

(335)

where Γkji are the (chart-dependent) connection coefficient functions (on M) of ∇ w.r.t.
(U, x).

Definition D.21 (Christoffel symbols). Given a smooth manifold (M,O,A) and a chart (U, x) ∈
A, the Christoffel symbols Γkji := Γ(x)

k
ji

are the connection coefficient functions defining a

connection on the smooth manifold via

Γkji : U → R,

p 7→ Γkji(p) :=
(

dxk
(
∇ ∂

∂xi

∂

∂xj

))
(p). (336)

In one chart (U, x), the Christoffel symbols, we can write the vector field in (335) as

∇XY = Xi
(∂Y j

∂xi

) ∂

∂xj
+XiY jΓkji

∂

∂xk
= Xi

[(∂Y j

∂xi

) ∂

∂xj
+ Y jΓkji

∂

∂xk

]
, (337)

or we can write down its components

(∇XY )m = X(Y m) + Γmji Y
j Xi, (338)

where Y m is the m-th component of Y and the products in this expression are all pointwise
products of C∞ functions. By the duality between basis and Leibniz rule, one can show that

(∇Xω)m = X(ωm)− Γjmi ωj X
i. (339)

Based on (338) and (339), given an n-dimensional smooth manifold (M,O,A), we can
determine a connection ∇ from the n3-many Christoffel symbols Γkji, and we are left with
a huge freedom for choosing Γkji in order to determine a manifold with smooth connection
(M,O,A,∇).

A first step to nail down the number of connections is to require the torsion-free structure.
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Definition D.22 (Torsion). Let (M,O,A,∇) be a smooth manifold with connection. The
torsion of ∇ is the (1, 2)-tensor field

T (ω,X, Y ) = ω(∇XY −∇YX − [X,Y ]), (340)

where the Lie bracket [X,Y ] is the vector field defined by

[X,Y ]f = X(Y f)− Y (Xf), f ∈ C∞(M). (341)

The manifold (M,O,A,∇) (or simply the connection ∇) is said to be torsion-free if T ≡ 0.

It is easy to check that torsion T (ω,X, Y ) defined in (340) is indeed a C∞(M)-multi-linear
map. Note that, for chart-induced basis,

[
∂

∂xi
,
∂

∂xj
] = 0, (342)

so that the components of torsion are given by T kij = Γkji − Γkij . Thus, on a chart-induced
basis, the connection ∇ is torsion-free if the Christoffel symbols are symmetric Γkji = Γkij .

In order to define a curvature, it is first instructive to think about how the straight lines
look like in a curved smooth manifold. It is intuitively clear to speak about straight lines in
Euclidean spaces. This leads to the notion of autoparallely transported curves.

Definition D.23 (Paralle transport). A vector field X on M is said to be parallelly transported
along a smooth curve γ : R→M if

∇vγX = 0, (343)

where vγ denotes the velocity vector field along γ.

Definition D.24 (Autoparallely transported curve). A smooth curve γ : R→M is said to be
autoparallely transported if

∇vγvγ = 0, (344)

where vγ again denotes the velocity vector field along γ.

In words, the velocity vector field along an autoparallely transported curve is constant
along the curve. We can view such curves have constant velocity, which mimics the “no-
acceleration” situation of straight lines in Rn.

Definition D.25 (Riemann curvature). The Riemann curvature of a connection ∇ is the (1, 3)-
tensor field

R(ω,Z,X, Y ) = ω(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z). (345)

It is also easy to check that the Riemann curvature R(ω,Z,X, Y ) defined in (345) is
indeed a C∞(M)-multi-linear map. In a chart-induced basis ∂

∂x1 , . . . ,
∂
∂xn , components of the

Riemann curvature tensor can be expressed in terms of Christoffel symbols:

Rabcd = R
(

dxa,
∂

∂xb
,
∂

∂xc
,
∂

∂xd

)
=

∂

∂xc
Γadb −

∂

∂xd
Γacb + ΓacsΓ

s
db − ΓadsΓ

s
cb. (346)
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Remark D.26 (Euclidean space with Cartesian coordinates). Consider the Euclidean space as
a smooth manifold (Rn,O,A) equipped with the standard topology (i.e., topology generated
by open subsets in Rn) and a smooth atlas A. Under different atlas, we may have a Euclidean
space with different coordinate systems such as Cartesian and polar coordinate systems. By
default, if we assume the chart (Rn, idRn) ∈ A and for such chart,

Γkji =
(

dxk
(
∇e∂

∂xi

∂

∂xj

))
= 0, (347)

where ∂
∂x1 , . . . ,

∂
∂xn is the global Cartesian basis, then we call ∇e the Euclidean connection

and the resulting the manifold with connection (Rn,O,A,∇e) the n-dimensional Euclidean
space. Usually, we suppress the superscript e and simply write ∇ = ∇e.

D.6 Riemannian manifolds and geodesics

Now we consider a smooth manifold with a metric structure and construct a connection on
such metric manifold. On a metric manifold, we can speak of metric quantities such as speed
or length of curves. It turns out, with an additional metric-compatibility requirement (plus
the torsion-free requirement), one can uniquely determine a connection on the metric manifold
such that the straight lines are the same as length-minimizing curves.

Let g : Γ(TM) × Γ(TM) → C∞(M) be a symmetric (0, 2)-tensor field (i.e., g(X,Y ) =
g(Y,X) for all vector fields X and Y in Γ(TM)). We first define a bundle isomorphism called
the musical map

[ : Γ(TM)→ Γ(T ∗M),

X 7→ [(X) such that [(X)(Y ) = g(X,Y ). (348)

By construction, the musical map [ := [g depends on the metric tensor g.
For a vector field X ∈ Γ(TM), [(X) ∈ Γ(T ∗M) is a (0, 1)-tensor with components given

by

([(X))a = [(X)
( ∂

∂xa

)
= g
(
X,

∂

∂xa

)
= g
(
Xm ∂

∂xm
,
∂

∂xa

)
= Xmg

( ∂

∂xm
,
∂

∂xa

)
= Xmgam.

(349)

where we used C∞(M)-multi-linearity of g.

Definition D.27 (Metric). A (non-degenerate) metric g on a smooth manifold (M,O,A) is
a symmetric (0, 2)-tensor field such that the musical map [ is a C∞-isomorphism (i.e., [ is
invertible) between the tangent field Γ(TM) and the cotangent field Γ(T ∗M).

Given a (symmetric and non-degenerate) metric g, one can define its inverse g−1 as the
symmetric (2, 0)-tensor field by

g−1 : Γ(T ∗M)× Γ(T ∗M)→ C∞(M),

(ω, σ) 7→ ω([−1(σ)). (350)

For a covector field ω ∈ Γ(T ∗M), [−1(ω) ∈ Γ(TM) is a (1, 0)-tensor as a vector field (via
an isomorphic identification) with components given by

([−1(ω))a = dxa([−1(ω)) = g−1(dxa, ω)

= g−1(dxa, ωmdxm) = ωmg
−1(dxa,dxm) = ωmg

am.
(351)
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where we used C∞(M)-multi-linearity of g−1 and we denote gam as the components of g−1.
Informally, a (1, 1)-tensor field can be represented by a symmetric matrix (say in a chart),

and we know that a symmetric matrix has an eigendecomposition with real eigenvalues. For
a general (r, s)-metric tensor field g, it does not have an eigendecomposition. Rather, it only
has a signature.

Definition D.28 (Riemannian metric). A metric is called Riemannian (or sometimes called
positive-definite) if its signature is (+, . . . ,+). Metrics with all other signatures are called
pseudo-Riemannian metric.

Definition D.29 (Riemannian manifold). A Riemannian manifold (M,O,A, g) is a smooth
manifold (M,O,A) equipped with a Riemannian metric tensor g.

Because a Riemannian metric is positive-definite, it defines an inner product structure on
the tangent field Γ(TM). In particular, on a Riemannian metric manifold (M,O,A, g), the
speed s(t) of a curve at γ(t) is defined as

s(t) =

√(
g(vγ , vγ)

)
γ(t)

, (352)

where vγ is the velocity vector field along the curve (i.e., vγ,t is the velocity of curve γ at t).

Definition D.30 (Length). Let γ : [0, 1] → M be a smooth curve. Then the length of γ is
defined as

L(γ) =

∫ 1

0
s(t) dt =

∫ 1

0

√(
g(vγ , vγ)

)
γ(t)

dt (353)

Lemma D.31 (Length is preserved under reparametrization). Let γ : [0, 1]→M be a smooth
curve and σ : [0, 1]→ [0, 1] be a smooth, bijective, and increasing function. Then

L(γ) = L(γ ◦ σ). (354)

Definition D.32 (Geodesic). A curve γ : [0, 1] → M is called a geodesic on a Riemannian
manifold (M,O,A, g) if it is a stationary curve w.r.t. the length functional L in (353).

Recall that the signature of a Riemannian manifold is (+, . . . ,+). Thus, given two end
points on M , a geodesic corresponding to the stationary point of L is the length-minimizing
curve on the manifold. Nevertheless, we should note that geodesic does not always exist:
consider two points (+1,+1) and (−1,−1) in R2 \ {(0, 0)} with the Euclidean metric on R2.
This problem can be fixed by considering the admissible curve, which is a piecewise smooth
curve segment. Setting

d(p, q) = inf
{
L(γ) : γ : [0, 1]→M is admissible, γ(0) = p, γ(1) = q

}
, (355)

then (M,d) is a metric space [8, Chapter 2] (sometimes referred as a length space). If (M,d) is
a complete metric space, then it is a geodesically complete manifold/space or simply geodesic
space.

Theorem D.33 (Levi-Civita connection). On a Riemannian manifold (M,O,A, g), there is a
unique connection ∇ that is torsion-free T = 0 and metric-compatible ∇g = 0. This connec-
tion is called the Levi-Civita connection (or sometimes called the Riemiannian connection).
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For any vector fields X,Y, Z in the tangent bundle TM , the Leibniz rule (330) reads

∇Xg(Y,Z) = (∇Xg)(Y,Z) + g(∇XY,Z) + g(Y,∇XZ). (356)

Since g(Y,Z) ∈ C∞(M) and ∇Xg = 0, metric compatibility can be equivalently expressed as

X(g(Y, Z)) = g(∇XY,Z) + g(Y,∇XZ). (357)

From now on, on a Riemannian manifold (M,O,A, g), the connection endowed will al-
ways be the Levi-Civita connection (without mentioning further). In such case, the metric
compatibility implies that a straight line between two points on the manifold is the same
as a geodesic that minimizes the length functional L in (353). That is, once we work on a
Riemannian manifold, the Riemman curvature tensor will be (implicitly) induced from the
Levi-Civita connection. However, we should highlight that the Riemann curvature tensor can
be defined through any connection without referring to the Riemannian metric.

Lemma D.34 (Existence and uniqueness of geodesics). Let (M,O,A, g) be a Riemannian
manifold. For every point p ∈M and v ∈ TpM , there is a unique maximal geodesic γ := γv :
I →M with γ(0) = p and γ′(p) = v, defined on some open interval I containing 0.

Proof of Lemma D.34 can be found in Theorem 4.27 and Corollary 4.28 in [8].

Definition D.35 (Exponential map). Let (M,O,A, g) be a Riemannian manifold and p ∈M .
The exponential map expp : TpM →M is defined by

expp(v) = γv(1), (358)

where γv is the unique maximal geodesic defined on an open interval containing [0, 1] (cf.
Lemma D.34).

Note that for a smooth manifold (M,O,A), without additional connection ∇ or metric g
structures, we cannot speak of the manifold shape. Given two end points, the straight line
determined by the autoparallely transported curves coincides to the geodesic determined by
the metric g if coefficient functions of the Levi-Civita connection satisfy that

Γijk =
1

2
giq
(∂gkq
∂xj

+
∂gjq
∂xk

−
∂gjk
∂xq

)
, (359)

which comes from the geodesic equation.

Example D.36 (Round metric on 2-sphere). Consider the 2-sphere manifold (S2,O,A) and
a chart map x(p) := (x1(p), x2(p)) = (θ, ϕ) such that θ ∈ (0, π) and ϕ ∈ (0, 2π). We now
determine the shape of the smooth manifold 2-sphere by the round metric. Under the chart
map x, we may equip the 2-sphere smooth manifold (S2,O,A) with the round metric whose
components are given by

(
gij(x

−1(θ, ϕ))
)
i,j=1,2

=

(
1 0
0 sin2(θ)

)
. (360)

It is straightforward to check that the metric g in (360) corresponds to a connection ∇round

with the connection coefficients in (359) given by

Γ1
22(x−1(θ, ϕ)) = − sin(θ) cos(θ), Γ1

12 = Γ1
21 = cot(θ), (361)
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and all other 5 Christoffel symbols are all zeros. Consider the equator curve γ of the round
2-sphere parameterized by

θ(t) := (θ ◦ γ)(t) = (x1 ◦ γ)(t) =
π

2
, (362)

ϕ(t) := (ϕ ◦ γ)(t) = (x2 ◦ γ)(t) = 2πt3. (363)

Obviously, θ′(t) = 0 and ϕ′(t) = 6πt2. Then the length of γ can be computed by using the
components of the round metric tensor

L(γ) =

∫ 1

0

√
gij(x−1(θ(t), ϕ(t)))(xi ◦ γ)′(t)(xj ◦ γ)′(t) dt

=

∫ 1

0

√
1 · 0 + sin2(π/2) · 36π2t4 dt (364)

= 6π

∫ 1

0
t2 dt = 2π, (365)

which is the same as the length of the equator curve under the constant speed parametrizaiton
ϕ(t) = 2πt. In the special case of round sphere, this calculation verifies the length maintenance
under reparametrization stated in Lemma D.31. �

From the metric tensor g, we can define more curvature tensors on a Riemannian manifold
via contraction.

Definition D.37 (Curvature tensors). Let (M,O,A, g) be a Riemannian manifold.

1. The Riemann-Christoffel curvature is a (0, 4)-tensor defined by

Rabcd = gamRmbcd. (366)

2. The Ricci curvature is a (0, 2)-tensor defined by

Rab = Rmamb. (367)

3. The scalar curvature is defined by

R = (g−1)abRab. (368)

4. The Einstein curvature is a (0, 2)-tensor defined by

Gab = Rab −
1

2
Rgab. (369)

D.7 Volume forms

Consider the problem of integrating functions over a smooth manifold (M,O,A).

Definition D.38 (Volume form). On an n-dimensional smooth manifold (M,O,A), a (0, n)-
tensor field Ω (over Γ(TM)) is called a volume form if

1. Non-vanishing: Ω 6= 0 on M ;
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2. Totally anti-symmetric: Ω(. . . , Xi, . . . , Xj , . . . ) = −Ω(. . . , Xj , . . . , Xi, . . . ) for allXi, Xj ∈
Γ(TM) and i, j = 1, . . . , n.

We can construct a (natural) volume form from a Riemannian manifold. Let (M,O,A, g)
be a Riemannian manifold. Take an arbitrary chart (U, x) and we let the components of the
tensor field Ω be given by

Ωi1,...,in =
√
gij εi1,...,in , (370)

where (i1, . . . , in) is a permutation of (1, . . . , n) such that ε1,...,n = 1 and εi1,...,in = ε[i1,...,in] for
any anti-symmetric bracket [. . . ]. The εi1,...,in ’s are called the Levi-Civita symbols. One can
check that Ωi1,...,in is well-defined if and only if for any pair of charts (U, x) and (U, y),

det
(∂y
∂x

)
= det(∂i(y

j ◦ x−1)) > 0. (371)

Condition (371) means that the chart transition maps are oriented.

Definition D.39 (Oriented atlas). Let A be a smooth atlas. Then A↑ ⊂ A is called a (pos-
itively) oriented sub-atlas of A if for any two charts (U, x), (V, y) ∈ A↑, the chart transition
maps y ◦ x−1 and x ◦ y−1 are oriented:

det
(∂y
∂x

)
> 0 or det

(∂x
∂y

)
> 0 on U ∩ V. (372)

Let (M,O,A↑) be a smooth oriented manifold and (U, x) ∈ A↑ be an oriented chart. Given
a volume form Ω, we can define a scalar density on M by

ω(p) = Ωi1,...,in(p) εi1,...,in for p ∈M, (373)

where εi1,...,in = εi1,...,in . Note that Ωi1,...,in is chart-dependent, so is ω. Moreover, the change
of scalar density under a change of chart is given by

ω(y) = det
(∂x
∂y

)
ω(x) (374)

for any two charts (U, x), (U, y) ∈ A↑.
Let (M,O,A↑, g) be an oriented metric manifold. On one chart domain (U, x), we can

define the integration of a function f : U → R as∫
U
f :=

∫
x(U)

√
det(gij)(x−1(α))(f ◦ x−1)(α) dα. (375)

One can check that (375) is well-defined and does not depend on the chart map on the same
chart domain U . To extend the integration to the whole manifold, we would then need
partition of unity. Let (Ui, xi) ∈ A↑ and %i : Ui → R, i = 1, . . . , N, be a finite collection of
continuous functions such that for any p ∈ M , we have

∑
i %i(p) = 1 where the sum is taken

over i such that p ∈ Ui. Then we define the integration of a function f : M → R as∫
M
f =

N∑
i=1

∫
Ui

(%if). (376)

Combining (375) and (376), we can define the (natural) volume form of a Riemannian
manifold as following.
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Definition D.40 (Volume form of oriented Riemannian manifold). Let (M,O,A↑, g) be an
oriented Riemmanian manifold and (U, x) ∈ A↑ be an oriented chart. The volume form of the
manifold M in an oriented chart (i.e., local coordinates) is defined as

dVol =
√

det(g) dx1 ∧ · · · ∧ dxn, (377)

where ∧ denotes the wedge product. The integration of a function f : M → R is defined as∫
M
f :=

∫
M
f(p) dVol(p). (378)
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