U-statistics

Xiaohui Chen

Keywords: random sample, sample variance, Cramér-von Mises, Kaplan-Meier, Nelson-Aalen, energy statistic, asymptotics, bootstrap.

Abstract

Abstract: A U-statistic, calculated from a random sample of size n, is an average of a symmetric function calculated for all m-tuples in the sample. Examples include the sample variance, the Cramér-von Mises and energy statistics of goodness-of-fit, and the Kaplan-Meier and Nelson-Aalen estimators in survival analysis. Asymptotic properties are described.

1 Introduction and Examples

Given a random sample $\langle \text{stat}05945 \rangle$ (a sequence of independent and identically distributed random variables $\langle \text{stat}04404 \rangle X_1, \ldots, X_n$ with common distribution function $\langle \text{stat}07524 \rangle F$), the study of the statistical properties of the sample mean $\langle \text{stat}00541 \rangle$, $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$, is a well-established part of probability theory $\langle \text{stat}03979 \rangle$. The notion of averaging over the observations has been generalized by Hoeffding $\langle \text{stat}01309 \rangle$ [14] in the following way: given a measurable $\langle \text{stat}02290 \rangle$ real-valued function h, symmetric in its m arguments, a U-statistic is obtained by averaging the outcomes $h(X_{i_1}, \ldots, X_{i_m})$ over all possible ordered m-tuples $I_{n,m} = \{(i_1, \ldots, i_m) : 1 \leq i_1 < \ldots < i_m \leq n\}$, i.e.,

$$U_n = \binom{n}{m}^{-1} \sum_{(i_1, \dots, i_m) \in I_{n,m}} h(X_{i_1}, \dots, X_{i_m}).$$

Then U_n is called a U-statistic with $kernel\ h$ of $degree\ m$. We assume, of course, that $n \ge m$. Many statistics in estimation and testing theory can be represented as U-statistics. We give three examples.

University of Illinois at Urbana-Champaign, Illinois, USA. Email: xhchen@illinois.edu

The author would like to acknowledge a preliminary version of this article by Paul Janssen.

This article was originally published online in 2005 in Encyclopedia of Biostatistics, © John Wiley & Sons, Ltd and republished in Wiley StatsRef: Statistics Reference Online, 2014.

Example 1. Assume $0 < \sigma^2 = var(X_1) < \infty$. The sample variance $S_n^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$, the minimum variance unbiased estimator $\langle stat05910 \rangle$ for σ^2 , can be rewritten as

$$S_n^2 = {n \choose 2}^{-1} \sum_{1 \le i \le j \le n} \frac{(X_i - X_j)^2}{2}.$$

Therefore, the sample variance is a U-statistic with kernel $h(x,y) = (x-y)^2/2$. In general, we have that the minimum variance unbiased estimator of the m-th central **moment** $\langle stat05913 \rangle$ is a U-statistic with kernel of degree m. See, for example, Hoeffding [14, p. 295] and Serfling [21, p. 176] for details.

Example 2. The Cramér-von Mises statistic $\langle stat01467 \rangle$, a goodness-of-fit $\langle stat05753 \rangle$ statistic to test if the unknown distribution function F equals some specified distribution function F_0 , is given by

$$V_n = \int_{-\infty}^{+\infty} [F_n(x) - F_0(x)]^2 dF_0(x),$$

where $F_n(x) = n^{-1} \sum_{i=1}^n I\{X_i \leq x\}$ is the **empirical distribution function** $\langle stat02712 \rangle$ of the sample X_1, \ldots, X_n . Then we can write $V_n = n^{-2} \sum_{i=1}^n \sum_{j=1}^n h(X_i, X_j)$ as the V-statistic associated with the kernel

$$h(x,y) = \int_{-\infty}^{+\infty} [I\{x \le t\} - F_0(t)][I\{y \le t\} - F_0(t)] dF_0(t).$$

An asymptotically equivalent statistic is the U-statistic

$$U_n = \binom{n}{2}^{-1} \sum_{1 \le i < j \le n} h(X_i, X_j).$$

See de Wet [7] for a detailed discussion.

Example 3. The Cramér-von Mises statistic is not rotation invariant for multivariate distributions. Suppose that X and Y are independent random vectors in \mathbb{R}^p such that $E|X| < \infty$ and $E|Y| < \infty$, where $|\cdot|$ is the Euclidean norm of \mathbb{R}^p . The energy distance between X and Y is defined as

$$\mathcal{E}(X,Y) = 2E|X - Y| - E|X - X'| - E|Y - Y'|,$$

where X' (or Y') is an independent copy of X (or Y) [26]. It is known that $\mathcal{E}(X,Y) \geq 0$, where the equality is attained if and only if X and Y have the same distribution. Given a random sample X_1, \ldots, X_n with an unknown distribution function F, a goodness-of-fit test for $H_0: F = F_0$ based on the energy statistic is given by

$$\mathcal{E}_n = \frac{2}{n} \sum_{i=1}^n E_Y |X_i - Y| - E|Y - Y'| - \frac{1}{n^2} \sum_{i=1}^n |X_i - X_i|,$$

where Y and Y' are iid with distribution F_0 (also independent of X_1, \ldots, X_n), and E_Y is the expectation taken with respect to Y. It is clear that \mathcal{E}_n is a V-statistic, which is asymptotically equivalent to the unbiased U-statistic with the kernel

$$h(x,y) = E|x - Y| + E|y - Y'| - E|Y - Y'| - |x - y|.$$

For all examples above, we have that the **parameter** $\langle \text{stat00676} \rangle$ of interest is of the form

 $\theta(F) = Eh(X_1, X_2) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(x, y) dF(x) dF(y).$

With h as in Example 1 we have $\theta(F) = \sigma^2$. The goodness-of-fit parameter in Example 2 is $\theta(F) = \int_{-\infty}^{+\infty} [F(x) - F_0(x)]^2 dF_0(x)$ and in Example 3 is

$$\theta(F) = 2 \int_{\mathbb{R}^p} \int_{\mathbb{R}^p} |x - y| dF(x) dF_0(y) - \int_{\mathbb{R}^p} \int_{\mathbb{R}^p} |y - y'| dF_0(y) dF_0(y') - \int_{\mathbb{R}^p} \int_{\mathbb{R}^p} |x - x'| dF(x) dF(x').$$

Under the null hypothesis $H_0: F = F_0$, we have $\theta(F_0) = 0$ in both cases. If, in general, a real-valued functional θ defined on a set \mathcal{F} of distribution functions can be written as the expectation with respect to $F \in \mathcal{F}$ of a properly chosen kernel h of degree m, the functional θ is called a regular functional. Such functionals have U-statistics as minimum variance unbiased estimators. For more details, we refer to the book by Lee [19, Chapter 1], which includes a variety of further examples (Chapter 6).

Note that a naive estimator for $\theta(F)$ can be obtained by the plug-in method (replace F by F_n), i.e., use $\theta(F_n)$ as an estimator for $\theta(F)$. The resulting (biased) estimator is the von Mises statistic. The goodness-of-fit statistics, V_n in Example 2 and \mathcal{E}_n in Example 3, are plug-in estimators. U-statistics and von Mises statistics are closely related.

A U-statistic with kernel of degree m can be written in terms of uncorrelated U-statistics of degree $1, \ldots, m$. Indeed, the *Hoeffding decomposition* (due to Hoeffding [15]) is given by

$$U_n - \theta(F) = \sum_{c=1}^{m} {m \choose c} U_n^{(c)},$$

where

$$U_n^{(c)} = \binom{n}{c}^{-1} S_n^{(c)} := \binom{n}{c}^{-1} \sum_{(i_1, \dots, i_c) \in I_{n,c}} h_c(X_{i_1}, \dots, X_{i_c})$$

and

$$h_c(x_1, \dots, x_c) = (\delta_{x_1} - F) \cdots (\delta_{x_c} - F) F^{m-c} h$$

$$= \int \cdots \int h(u_1, \dots, u_m) \prod_{i=1}^c (d\delta_{x_i}(u_i) - dF(u_i)) \prod_{i=i+1}^m dF(u_i).$$

Here, δ_x is the **Dirac delta function** $\langle \text{stat}02228 \rangle$. See [19, Section 1.6] or [6, Section 3.5] for further discussions. Other important structural properties are the *forward martingale*

structure of $\{S_n^{(c)}, \mathcal{F}_n\}_{n\geq c}$ with $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, and the reverse martingale structure of $\{U_n, \tilde{\mathcal{F}}_n\}_{n\geq m}$ with $\tilde{\mathcal{F}}_n = \sigma(X_{(1):n}, \ldots, X_{(n):n}, X_{n+1}, X_{n+2}, \ldots)$ and $X_{(i):n}$ the *i*-th order statistic of X_1, \ldots, X_n [19, Section 3.4] (see the discussion of **martingales** $\langle \text{stat02941} \rangle$ in the entry on **Counting Process Methods in Survival Analysis** $\langle \text{stat06009} \rangle$).

So far we have demonstrated that many statistics are U-statistics and we have discussed some structural properties. It is also highly relevant that U-statistics appear as terms in stochastic approximations of smooth statistics. U-statistics are, for example, extremely useful to approximate important estimators in nonparametric **density estimation** \langle stat05843 \rangle and **nonparametric regression** \langle stat05768 \rangle theory (see [13] and [20]) and **survival analysis** \langle stat06060 \rangle (see [5]). The basic idea is that the estimator of interest can be approximated by a sum of uncorrelated U-statistics. This idea is closely related to the Hoeffding decomposition of a U-statistic (see [19, Section 4.1] and [9]) and to von Mises expansions, a generalization of the projection method (a technique discussed in more detail in Section 2). For further reading we refer to [21, Chapter 6] and [10].

A more detailed discussion would require a number of technical concepts and definitions. We therefore restrict ourselves to one illustration.

Example 4. Let T_1, \ldots, T_n denote iid nonnegative survival times with a continuous distribution function F and let C_1, \ldots, C_n denote iid nonnegative censoring times with a continuous distribution function G. For $i = 1, \ldots, n$, we denote $X_i = \min(T_i, C_i)$ and $\delta_i = I\{T_i \leq C_i\}$. Let $\hat{F}_n(t)$ denote the product-limit or **Kaplan-Meier estimator** $\langle \text{stat06033} \rangle$ for F(t). With $\hat{\Lambda}_n(t)$ the **Nelson-Aalen estimator** $\langle \text{stat06045} \rangle$ and $\Lambda(t)$ the cumulative **hazard function** $\langle \text{stat04288} \rangle$, a U-statistic representation has been established in [5] for $\hat{\Lambda}_n(t) - \Lambda(t)$. On the basis of the relation

$$\hat{F}_n(t) - F(t) = \exp[-\Lambda(t)] \times \{1 - \exp[-(\Lambda_n(t) - \Lambda(t))]\}$$

and using **Taylor expansion** (stat00778) ideas, a U-statistic representation for the Kaplan-Meier estimator can be obtained.

2 Asymptotic Properties

A basic contribution to the study of the asymptotic behavior of U-statistics (see Large-sample Theory $\langle \text{stat05876} \rangle$) is the following result.

Theorem 1. If
$$E[h(X_1, ..., X_m)] < \infty$$
, then $U_n \to \theta(F)$ almost surely (a.s.).

This theorem states that the classical strong law of large numbers $\langle \text{stat}05877 \rangle$ for the sample mean generalizes to *U*-statistics. Various proofs are available. They rely on the martingale structure of *U*-statistics mentioned above. For full proofs and references to the original papers, see Lee [19, Section 3.4].

Next, we briefly discuss the asymptotic distribution theory for U-statistics. The limit distribution of a (properly standardized) U-statistic will be Gaussian if we can obtain a stochastic approximation \hat{U}_n of iid structure that is close to U_n (in the sense that U_n inherits

the asymptotic distributional behavior of \hat{U}_n). The appropriate approximation is obtained from the projection technique, which is in fact the first term in the Hoeffding decomposition. We have

$$\hat{U}_n = \sum_{i=1}^n E(U_n | X_i) - (n-1)\theta(F).$$

With

$$h_1(x) = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} h(x, x_2, \dots, x_m) dF(x_2) \cdots dF(x_m) - \theta(F)$$

we can write

$$\hat{U}_n - \theta(F) = \frac{m}{n} \sum_{i=1}^n h_1(X_i).$$

If $h_1 \equiv 0$, then the *U*-statistic is said to be *degenerate* (of order 1); otherwise, the *U*-statistic is *nondegenerate*. Degenerate *U*-statistics do not admit an iid approximation, and as a consequence the limit distribution is not Gaussian. For nondegenerate *U*-statistics the following central limit result is valid.

Theorem 2. [14]. If $Eh^2(X_1, ..., X_m) < \infty$ and $\zeta_1 = Var(h_1(X_1)) > 0$ (i.e., U_n is nondegenerate), then

$$\frac{\sqrt{n}[U_n - \theta(F)]}{(m\zeta_1^{1/2})} \stackrel{d}{\to} Z,$$

where Z is a standard **normal** $\langle stat01090 \rangle$ random variable.

A simple calculation shows that

$$\zeta_1 = E\{[h(X_1, X_2, \dots, X_m) - \theta(F)][h(X_1, X_{m+1}, \dots, X_{2m-1}) - \theta(F)]\}.$$

For a degenerate *U*-statistic (i.e., the first term in the Hoeffding decomposition vanishes and $\zeta_1 = 0$) with $\zeta_2 = E\{[h(X_1, X_2, X_3, \dots, X_m) - \theta(F)][h(X_1, X_2, X_{m+1}, \dots, X_{2m-2}) - \theta(F)]\} > 0$, we have

$$U_n - \theta(F) = \frac{m(m-1)}{n(n-1)} \sum_{1 \le i < j \le n} h_2(X_i, X_j) + \sum_{c=3}^m {m \choose c} U_n^{(c)}.$$

For h_2 , define the integral operator

$$Az(x) = \int_{-\infty}^{+\infty} h_2(x, y) z(y) dF(y),$$

where z is square integrable with respect to F. Let $\lambda_1, \lambda_2, \ldots$ denote the real (not necessarily distinct) eigenvalues corresponding to the distinct solutions z_1, z_2, \ldots of the equation $Az = \lambda z$.

Theorem 3. [12]. If $E[h^2(X_1, ..., X_m)] < \infty \text{ and } \zeta_1 = 0 < \zeta_2, \text{ then}$

$$n[U_n - \theta(F)] \xrightarrow{d} \frac{m(m-1)}{2} Y,$$

where Y is a random variable of the form $Y = \sum_{j=1}^{\infty} \lambda_j [\chi_j^2(1) - 1]$, where $\chi_1^2(1), \chi_2^2(1), \ldots$ are independent $\chi^2(1)$ (stat00936) random variables (see Convergence in Distribution and in Probability (stat02847)).

Example 5. For the sample variance an application of Theorem 5 yields (with μ_k the k-th central moment): if $\mu_4 < \infty$ and $\mu_4 - \mu_2^2 > 0$, then $\sqrt{n}(S_n^2 - \mu_2)$ has a limiting normal distribution with mean zero and variance $\mu_4 - \mu_2^2$.

Example 6. Under the null hypothesis $F = F_0$, the Cramér-von Mises statistic is a degenerate U-statistic. Then Theorem 6 holds with the eigenvalues $\lambda_j = (j\pi)^{-2}$. See [7] for details.

3 Remarks and Extensions

- 1. For U-statistics with a kernel of degree m > 2, higher-order terms in the Hoeffding decomposition might vanish (i.e., higher-order degeneracy). Asymptotic distribution theory has been established in the literature. The resulting limit distributions are characterized in terms of multiple Wiener integrals [8].
- 2. We reviewed some basic results for one-sample *U*-statistics. Extensions to multi-sample or generalized *U*-statistics are available. See the books by Lee [19], Koroljuk & Borovskich [18] and Borovskikh [4] for details. These books also deal with other variations on the theme: incomplete *U*-statistics, random *U*-statistics, weighted *U*-statistics, generalized *L*-statistics, **Edgeworth expansions** (stat05844) for *U*-statistics, among many others.
- 3. **Bootstrap** $\langle \text{stat02662} \rangle$ theory for *U*-statistics is reviewed in Janssen [17]. Bickel & Freedman [3] is a basic reference.
- 4. A further important topic, especially for applications in nonparametric density and regression estimation, is the study of U-statistics with the kernel depending on the sample size n. Key references are Jammalamadaka & Janson [16] and Mammen [20]. We also mention the work by Frees [11] on infinite order U-statistics.
- 5. In Serfling [22] the study of *U*-processes and *U*-quantiles is initiated. Important contributions on *U*-processes and *U*-quantiles include Arcones & Giné [2], Stute [23], and Arcones [1]. Keywords in the development of new results for *U*-processes are martingales and decoupling. For details we refer to the book by de la Peña & Giné [6].
- 6. Non-asymptotic rates of convergence of the Gaussian and bootstrap approximations for multivariate *U*-statistics (of degree 2) in high dimensions are derived in Chen [24]. Computational and statistical trade-off for distributional approximations of high-dimensional *U*-statistics can be found in Chen & Kato [25].

References

- [1] Arcones, M. (1995). The asymptotic accuracy of the bootstrap *U*-quantiles, *Annals of Statistics* **23**, 1802 1822.
- [2] Arcones, M. & Giné, E. (1993). Limit theorems for *U*-processes, *Annals of Probability* **21**, 1494 1542.
- [3] Bickel, P. & Freedman, D. (1981). Some asymptotic theory for the bootstrap, *Annals of Statistics* 9, 1196 1217.
- [4] Borovskikh, Yu. V. (1996). U-Statistics in Banach Spaces. VSP, Utrecht.
- [5] Chang, M. N. & Rao, P. V. (1989). Berry-Esseen bound for the Kaplan-Meier estimator, Communications in Statistics Theory and Methods 18, 4647 4664.
- [6] de la Peña, V. & Giné, E. (1998). An Introduction to Decoupling Inequalities with Applications. Springer-Verlag, New York.
- [7] de Wet, T. (1987). Degenerate U- and V-statistics, South African Statistical Journal 21, 99 129.
- [8] Dynkin, E. B. & Mandelbaum, A. (1983). Symmetric statistics, Poisson point processes, and multiple Wiener integrals, *Annals of Statistics* 11, 739 745.
- [9] Efron, B. & Stein, C. (1981). The jackknife estimate of variance, *Annals of Statistics* **9**, 586 596.
- [10] Fernholz, L. (1983). Von Mises Calculus for Statistical Functionals. Springer-Verlag, New York.
- [11] Frees, E. W. (1989). Infinite order *U*-statistics, *Scandinavian Journal of Statistics* **16**, 29 45.
- [12] Gregory, G. (1977). Large sample theory for U-statistics and tests of fit, Annals of Statistics 5, 110 123.
- [13] Härdle, W. & Stoker, T. (1989). Investigating smooth multiple regression by the method of average derivatives, *Journal of the American Statistical Association* **84**, 986 995.
- [14] Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution, Annals of Mathematical Statistics 19, 293 – 325.
- [15] Hoeffding, W. (1961). The strong law of large numbers for *U*-statistics, *University of North Carolina Institute of Statistics Mimeo Series No. 302.*

- [16] Jammalamadaka, S. R. & Janson, S. (1986). Limit theorems for a triangular scheme of *U*-statistics with applications to interpoint distances, *Annals of Probability* **14**, 1347 1358.
- [17] Janssen, P. (1997). Bootstrapping *U*-statistics. South African Statistical Journal, to appear.
- [18] Koroljuk, V. S. & Borovskich, Yu. V. (1994). *Theory of U-Statistics*. Kluwer Academic Publishers, Dordrecht.
- [19] Lee, A. J. (1990). *U-Statistics*. Marcel Dekker, New York.
- [20] Mammen, E. (1992). When Does the Bootstrap Work? Springer-Verlag, New York.
- [21] Serfling, R. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.
- [22] Serfling, R. (1984). Generalized L-, M- and R-statistics, Annals of Statistics 12, 76 86.
- [23] Stute, W. (1994). *U*-statistic processes: a martingale approach, *Annals of Probability* **22**, 1725 1744.
- [24] Chen, X. (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications. *Annals of Statistics* **46**, 642 678.
- [25] Chen, X. & Kato, K. (2018+). Randomized incomplete *U*-statistics in high dimensions. *Annals of Statistics (accepted for publication)*.
- [26] Székely, Gábor J. and Rizzo, Maria L. (2017). The energy of data. *Annual Review of Statistics and Its Application* 4, 447 479.