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Abstract

Abstract: A U -statistic, calculated from a random sample of size n, is an average
of a symmetric function calculated for all m-tuples in the sample. Examples include
the sample variance, the Cramér-von Mises and energy statistics of goodness-of-fit,
and the Kaplan-Meier and Nelson-Aalen estimators in survival analysis. Asymptotic
properties are described.

1 Introduction and Examples

Given a random sample 〈stat05945〉 (a sequence of independent and identically distributed
random variables 〈stat04404〉X1, . . . , Xn with common distribution function 〈stat07524〉
F ), the study of the statistical properties of the sample mean 〈stat00541〉, Xn = n−1

∑n
i=1Xi,

is a well-established part of probability theory 〈stat03979〉. The notion of averaging over
the observations has been generalized by Hoeffding 〈stat01309〉 [14] in the following way:
given a measurable 〈stat02290〉 real-valued function h, symmetric in its m arguments, a
U-statistic is obtained by averaging the outcomes h(Xi1 , . . . , Xim) over all possible ordered
m-tuples In,m = {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ n}, i.e.,

Un =

(
n

m

)−1 ∑
(i1,...,im)∈In,m

h(Xi1 , . . . , Xim).

Then Un is called a U -statistic with kernel h of degree m. We assume, of course, that n ≥ m.
Many statistics in estimation and testing theory can be represented as U -statistics. We give
three examples.
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Example 1. Assume 0 < σ2 = var(X1) <∞. The sample variance S2
n = (n−1)−1

∑n
i=1(Xi−

Xn)2, the minimum variance unbiased estimator 〈stat05910〉 for σ2, can be rewritten
as

S2
n =

(
n

2

)−1 ∑
1≤i<j≤n

(Xi −Xj)
2

2
.

Therefore, the sample variance is a U-statistic with kernel h(x, y) = (x−y)2/2. In general, we
have that the minimum variance unbiased estimator of the m-th central moment 〈stat05913〉
is a U-statistic with kernel of degree m. See, for example, Hoeffding [14, p. 295] and Serfling
[21, p. 176] for details.

Example 2. The Cramér-von Mises statistic 〈stat01467〉, a goodness-of-fit 〈stat05753〉
statistic to test if the unknown distribution function F equals some specified distribution func-
tion F0, is given by

Vn =

∫ +∞

−∞
[Fn(x)− F0(x)]2dF0(x),

where Fn(x) = n−1
∑n

i=1 I{Xi ≤ x} is the empirical distribution function 〈stat02712〉 of
the sample X1, . . . , Xn. Then we can write Vn = n−2

∑n
i=1

∑n
j=1 h(Xi, Xj) as the V -statistic

associated with the kernel

h(x, y) =

∫ +∞

−∞
[I{x ≤ t} − F0(t)][I{y ≤ t} − F0(t)]dF0(t).

An asymptotically equivalent statistic is the U-statistic

Un =

(
n

2

)−1 ∑
1≤i<j≤n

h(Xi, Xj).

See de Wet [7] for a detailed discussion.

Example 3. The Cramér-von Mises statistic is not rotation invariant for multivariate dis-
tributions. Suppose that X and Y are independent random vectors in Rp such that E|X| <∞
and E|Y | <∞, where | · | is the Euclidean norm of Rp. The energy distance between X and
Y is defined as

E(X, Y ) = 2E|X − Y | − E|X −X ′| − E|Y − Y ′|,

where X ′ (or Y ′) is an independent copy of X (or Y ) [26]. It is known that E(X, Y ) ≥ 0,
where the equality is attained if and only if X and Y have the same distribution. Given a
random sample X1, . . . , Xn with an unknown distribution function F , a goodness-of-fit test
for H0 : F = F0 based on the energy statistic is given by

En =
2

n

n∑
i=1

EY |Xi − Y | − E|Y − Y ′| −
1

n2

n∑
i,j=1

|Xi −Xj|,
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where Y and Y ′ are iid with distribution F0 (also independent of X1, . . . , Xn), and EY is the
expectation taken with respect to Y . It is clear that En is a V-statistic, which is asymptotically
equivalent to the unbiased U-statistic with the kernel

h(x, y) = E|x− Y |+ E|y − Y ′| − E|Y − Y ′| − |x− y|.

For all examples above. we have that the parameter 〈stat00676〉 of interest is of the
form

θ(F ) = Eh(X1, X2) =

∫ +∞

−∞

∫ +∞

−∞
h(x, y)dF (x)dF (y).

With h as in Example 1 we have θ(F ) = σ2. The goodness-of-fit parameter in Example
2 is θ(F ) =

∫ +∞
−∞ [F (x)− F0(x)]2dF0(x) and in Example 3 is

θ(F ) = 2

∫
Rp

∫
Rp

|x−y|dF (x)dF0(y)−
∫
Rp

∫
Rp

|y−y′|dF0(y)dF0(y
′)−
∫
Rp

∫
Rp

|x−x′|dF (x)dF (x′).

Under the null hypothesis H0 : F = F0, we have θ(F0) = 0 in both cases. If, in general, a
real-valued functional θ defined on a set F of distribution functions can be written as the
expectation with respect to F ∈ F of a properly chosen kernel h of degree m, the functional
θ is called a regular functional. Such functionals have U -statistics as minimum variance
unbiased estimators. For more details, we refer to the book by Lee [19, Chapter 1], which
includes a variety of further examples (Chapter 6).

Note that a naive estimator for θ(F ) can be obtained by the plug-in method (replace F
by Fn), i.e., use θ(Fn) as an estimator for θ(F ). The resulting (biased) estimator is the von
Mises statistic. The goodness-of-fit statistics, Vn in Example 2 and En in Example 3, are
plug-in estimators. U -statistics and von Mises statistics are closely related.

A U -statistic with kernel of degree m can be written in terms of uncorrelated U -statistics
of degree 1, . . . ,m. Indeed, the Hoeffding decomposition (due to Hoeffding [15]) is given by

Un − θ(F ) =
m∑
c=1

(
m

c

)
U (c)
n ,

where

U (c)
n =

(
n

c

)−1
S(c)
n :=

(
n

c

)−1 ∑
(i1,...,ic)∈In,c

hc(Xi1 , . . . , Xic)

and

hc(x1, . . . , xc) = (δx1 − F ) · · · (δxc − F )Fm−ch

=

∫
· · ·
∫
h(u1, . . . , um)

c∏
i=1

(dδxi
(ui)− dF (ui))

m∏
i=c+1

dF (ui).

Here, δx is the Dirac delta function 〈stat02228〉. See [19, Section 1.6] or [6, Section 3.5]
for further discussions. Other important structural properties are the forward martingale
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structure of {S(c)
n ,Fn}n≥c with Fn = σ(X1, . . . , Xn), and the reverse martingale structure

of {Un, F̃n}n≥m with F̃n = σ(X(1):n, . . . , X(n):n, Xn+1, Xn+2, . . .) and X(i):n the i-th order
statistic of X1, . . . , Xn [19, Section 3.4] (see the discussion of martingales 〈stat02941〉 in
the entry on Counting Process Methods in Survival Analysis 〈stat06009〉).

So far we have demonstrated that many statistics are U -statistics and we have discussed
some structural properties. It is also highly relevant that U -statistics appear as terms in
stochastic approximations of smooth statistics. U -statistics are, for example, extremely use-
ful to approximate important estimators in nonparametric density estimation 〈stat05843〉
and nonparametric regression 〈stat05768〉 theory (see [13] and [20]) and survival anal-
ysis 〈stat06060〉 (see [5]). The basic idea is that the estimator of interest can be approxi-
mated by a sum of uncorrelated U -statistics. This idea is closely related to the Hoeffding
decomposition of a U -statistic (see [19, Section 4.1] and [9]) and to von Mises expansions, a
generalization of the projection method (a technique discussed in more detail in Section 2).
For further reading we refer to [21, Chapter 6] and [10].

A more detailed discussion would require a number of technical concepts and definitions.
We therefore restrict ourselves to one illustration.

Example 4. Let T1, . . . , Tn denote iid nonnegative survival times with a continuous distribu-
tion function F and let C1, . . . , Cn denote iid nonnegative censoring times with a continuous
distribution function G. For i = 1, . . . , n, we denote Xi = min(Ti, Ci) and δi = I{Ti ≤ Ci}.
Let F̂n(t) denote the product-limit or Kaplan-Meier estimator 〈stat06033〉 for F (t). With
Λ̂n(t) the Nelson-Aalen estimator 〈stat06045〉 and Λ(t) the cumulative hazard func-
tion 〈stat04288〉, a U-statistic representation has been established in [5] for Λ̂n(t) − Λ(t).
On the basis of the relation

F̂n(t)− F (t) = exp[−Λ(t)]× {1− exp[−(Λn(t)− Λ(t)]}

and using Taylor expansion 〈stat00778〉 ideas, a U-statistic representation for the Kaplan-
Meier estimator can be obtained.

2 Asymptotic Properties

A basic contribution to the study of the asymptotic behavior of U -statistics (see Large-
sample Theory 〈stat05876〉) is the following result.

Theorem 1. If E|h(X1, . . . , Xm)| <∞, then Un → θ(F ) almost surely (a.s.).

This theorem states that the classical strong law of large numbers 〈stat05877〉 for
the sample mean generalizes to U -statistics. Various proofs are available. They rely on the
martingale structure of U -statistics mentioned above. For full proofs and references to the
original papers, see Lee [19, Section 3.4].

Next, we briefly discuss the asymptotic distribution theory for U -statistics. The limit
distribution of a (properly standardized) U -statistic will be Gaussian if we can obtain a
stochastic approximation Ûn of iid structure that is close to Un (in the sense that Un inherits
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the asymptotic distributional behavior of Ûn). The appropriate approximation is obtained
from the projection technique, which is in fact the first term in the Hoeffding decomposition.
We have

Ûn =
n∑

i=1

E(Un|Xi)− (n− 1)θ(F ).

With

h1(x) =

∫ +∞

−∞
. . .

∫ +∞

−∞
h(x, x2, . . . , xm)dF (x2) · · · dF (xm)− θ(F )

we can write

Ûn − θ(F ) =
m

n

n∑
i=1

h1(Xi).

If h1 ≡ 0, then the U -statistic is said to be degenerate (of order 1); otherwise, the U -
statistic is nondegenerate. Degenerate U -statistics do not admit an iid approximation, and
as a consequence the limit distribution is not Gaussian. For nondegenerate U -statistics the
following central limit result is valid.

Theorem 2. [14]. If Eh2(X1, . . ., Xm) < ∞ and ζ1 = V ar(h1(X1)) > 0 (i.e., Un is
nondegenerate), then √

n[Un − θ(F )]

(mζ
1/2
1 )

d→Z,

where Z is a standard normal 〈stat01090〉 random variable.

A simple calculation shows that

ζ1 = E{[h(X1, X2, . . . , Xm)− θ(F )][h(X1, Xm+1, . . . , X2m−1)− θ(F )]}.

For a degenerate U -statistic (i.e., the first term in the Hoeffding decomposition vanishes and
ζ1 = 0) with ζ2 = E{[h(X1, X2, X3, . . . , Xm)− θ(F )][h(X1, X2, Xm+1, . . . , X2m−2)− θ(F )]} >
0, we have

Un − θ(F ) = m(m−1)
n(n−1)

∑
1≤i<j≤n

h2(Xi, Xj) +
m∑
c=3

(
m
c

)
U

(c)
n .

For h2, define the integral operator

Az(x) =

∫ +∞

−∞
h2(x, y)z(y)dF (y),

where z is square integrable with respect to F . Let λ1, λ2, . . . denote the real (not necessarily
distinct) eigenvalues corresponding to the distinct solutions z1, z2, . . . of the equation Az =
λz.

Theorem 3. [12]. If E[h2(X1, . . ., Xm)] <∞ and ζ1 = 0 < ζ2, then

n[Un − θ(F )]
d→ m(m− 1)

2
Y,
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where Y is a random variable of the form Y =
∑∞

j=1 λj [χ
2
j(1) − 1], where χ2

1(1), χ2
2(1), . . .

are independent χ2(1) 〈stat00936〉 random variables (see Convergence in Distribution
and in Probability 〈stat02847〉).

Example 5. For the sample variance an application of Theorem 5 yields (with µk the k-th
central moment): if µ4 < ∞ and µ4 − µ2

2 > 0, then
√
n(S2

n − µ2) has a limiting normal
distribution with mean zero and variance µ4 − µ2

2.

Example 6. Under the null hypothesis F = F0, the Cramér-von Mises statistic is a de-
generate U-statistic. Then Theorem 6 holds with the eigenvalues λj = (jπ)−2. See [7] for
details.

3 Remarks and Extensions

1. For U -statistics with a kernel of degree m > 2, higher-order terms in the Hoeffding
decomposition might vanish (i.e., higher-order degeneracy). Asymptotic distribution
theory has been established in the literature. The resulting limit distributions are
characterized in terms of multiple Wiener integrals [8].

2. We reviewed some basic results for one-sample U -statistics. Extensions to multi-sample
or generalized U -statistics are available. See the books by Lee [19], Koroljuk & Borovs-
kich [18] and Borovskikh [4] for details. These books also deal with other variations on
the theme: incomplete U -statistics, random U -statistics, weighted U -statistics, gener-
alized L-statistics, Edgeworth expansions 〈stat05844〉 for U -statistics, among many
others.

3. Bootstrap 〈stat02662〉 theory for U -statistics is reviewed in Janssen [17]. Bickel &
Freedman [3] is a basic reference.

4. A further important topic, especially for applications in nonparametric density and
regression estimation, is the study of U -statistics with the kernel depending on the
sample size n. Key references are Jammalamadaka & Janson [16] and Mammen [20].
We also mention the work by Frees [11] on infinite order U -statistics.

5. In Serfling [22] the study of U -processes and U -quantiles is initiated. Important con-
tributions on U -processes and U -quantiles include Arcones & Giné [2], Stute [23], and
Arcones [1]. Keywords in the development of new results for U -processes are martin-
gales and decoupling. For details we refer to the book by de la Peña & Giné [6].

6. Non-asymptotic rates of convergence of the Gaussian and bootstrap approximations
for multivariate U -statistics (of degree 2) in high dimensions are derived in Chen
[24]. Computational and statistical trade-off for distributional approximations of high-
dimensional U -statistics can be found in Chen & Kato [25].
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