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Abstract

Abstract: A U-statistic, calculated from a random sample of size n, is an average
of a symmetric function calculated for all m-tuples in the sample. Examples include
the sample variance, the Cramér-von Mises and energy statistics of goodness-of-fit,
and the Kaplan-Meier and Nelson-Aalen estimators in survival analysis. Asymptotic
properties are described.

1 Introduction and Examples

Given a random sample (stat05945) (a sequence of independent and identically distributed
random variables (stat04404) X1, ..., X,, with common distribution function (stat07524)
F'), the study of the statistical properties of the sample mean (stat00541), X,, =n=* 3" | X,
is a well-established part of probability theory (stat03979). The notion of averaging over
the observations has been generalized by Hoeffding (stat01309) [14] in the following way:
given a measurable (stat02290) real-valued function h, symmetric in its m arguments, a
U-statistic is obtained by averaging the outcomes h(X;,,...,X;, ) over all possible ordered
m-tuples I, m = {(i1,...,im) 1 1 <y < ... <1, <n},ie.,

—1

n
U, = WX, ... X))
(m) > ( m)

(il,...,im)efn,m

Then U, is called a U-statistic with kernel h of degree m. We assume, of course, that n > m.
Many statistics in estimation and testing theory can be represented as U-statistics. We give
three examples.
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Example 1. Assume0 < 0® = var(X,) < co. The sample variance S}, = (n—1)"" 37" | (X;—
X,)?%, the minimum variance unbiased estimator (stat05910) for o*, can be rewritten

as 53:(2)1 Z (X,L'—2Xj)2.

1<i<j<n

Therefore, the sample variance is a U-statistic with kernel h(z,y) = (x—y)?/2. In general, we
have that the minimum variance unbiased estimator of the m-th central moment (stat05913)
is a U-statistic with kernel of degree m. See, for example, Hoeffding [14, p. 295] and Serfling
[21, p. 176] for details.

Example 2. The Cramér-von Mises statistic (stat01467), a goodness-of-fit (stat05753)
statistic to test if the unknown distribution function F' equals some specified distribution func-
tion Fy, is given by
+00

Vo= [ IR@) - B@PdR),
where F,(z) =n~ 1Y " I{X; <} is the empirical distribution function (stat02712) of
the sample X1,..., Xp. Then we can write V,, = n=? 330 370 | h(X;, X;) as the V-statistic
associated with the kernel

) = [ T < 1) — B0y < ) — Fa()dFo(0).

o0

An asymptotically equivalent statistic is the U-statistic

Un:(g)_l 3 X X,).

1<i<j<n
See de Wet [7] for a detailed discussion.

Example 3. The Cramér-von Mises statistic is not rotation invariant for multivariate dis-
tributions. Suppose that X andY are independent random vectors in RP such that E|X| < oo
and E|Y| < 0o, where |- | is the Fuclidean norm of RP. The energy distance between X and
Y is defined as

EX,)Y)=2E|X -Y|-FE|X-X'|-ElY —Y'|,

where X' (or'Y') is an independent copy of X (orY ) [26]. It is known that E(X,Y) > 0,
where the equality is attained if and only if X and Y have the same distribution. Given a
random sample X1,..., X, with an unknown distribution function F, a goodness-of-fit test
for Hy : F' = Fy based on the energy statistic is given by

2 1 <
£ = EZEYDQ—Y\ —ElY —Y'| - — D IX - X,
i=1 ij=1



where Y and Y are iid with distribution Fy (also independent of X1, ..., X, ), and Ey is the
expectation taken with respect to'Y . It is clear that &, is a V-statistic, which is asymptotically
equivalent to the unbiased U-statistic with the kernel

hz,y)=Elt —=Y|+Ely—-Y'|-EY =Y'| — |z —y|.

For all examples above. we have that the parameter (stat00676) of interest is of the
form

0(F) = Eh(X), Xp) — /_ - /_ ™ ) dF (@) dF ()

With % as in Example 1 we have 0(F) = 0. The goodness-of-fit parameter in Example
2is O(F) = [T°[F(x) — Fy(x)]*d Fy(z) and in Example 3 is

o

o) =2 [ [ ar@an- [ [ -vianeane)- [ [ eslar@are),
rRr JRP Re JRP re JRP

Under the null hypothesis Hy : F' = Fy, we have 0(Fy) = 0 in both cases. If, in general, a
real-valued functional # defined on a set F of distribution functions can be written as the
expectation with respect to F' € F of a properly chosen kernel h of degree m, the functional

0 is called a regular functional. Such functionals have U-statistics as minimum variance
unbiased estimators. For more details, we refer to the book by Lee [19, Chapter 1], which
includes a variety of further examples (Chapter 6).

Note that a naive estimator for 6(F') can be obtained by the plug-in method (replace F’
by F),), i.e., use O(F,,) as an estimator for §(F'). The resulting (biased) estimator is the von
Mises statistic. The goodness-of-fit statistics, V,, in Example 2 and &, in Example 3, are
plug-in estimators. U-statistics and von Mises statistics are closely related.

A U-statistic with kernel of degree m can be written in terms of uncorrelated U-statistics
of degree 1,...,m. Indeed, the Hoeffding decomposition (due to Hoeffding [15]) is given by

v =3 (Mo,

c=1
where B »
vl = (") s .= (" T, ¢
" (C) " C Z hc(X“, 7ch)
(il 7777 ic)eln,c
and
hc(xl, ,xc) = _F (5 F)Fm ch
- / / Up,y ...\ U H(déxl(uz — dF(u;)) H dF (u;).
i=1 1=c+1

Here, §, is the Dirac delta function (stat02228). See [19, Section 1.6] or [6, Section 3.5]
for further discussions. Other important structural properties are the forward martingale
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structure of {Sﬁf),}"n}nzc with F,, = o(Xy,...,X,), and the reverse martingale structure
of {Up, Fulnsm with F = 0(X(iyms - Xnyms Xnt1s Xnsa, - -) and Xy, the i-th order
statistic of Xi,..., X, [19, Section 3.4] (see the discussion of martingales (stat02941) in
the entry on Counting Process Methods in Survival Analysis (stat06009)).

So far we have demonstrated that many statistics are U-statistics and we have discussed
some structural properties. It is also highly relevant that U-statistics appear as terms in
stochastic approximations of smooth statistics. U-statistics are, for example, extremely use-
ful to approximate important estimators in nonparametric density estimation (stat05843)
and nonparametric regression (stat05768) theory (see [13] and [20]) and survival anal-
ysis (stat06060) (see [5]). The basic idea is that the estimator of interest can be approxi-
mated by a sum of uncorrelated U-statistics. This idea is closely related to the Hoeffding
decomposition of a U-statistic (see [19, Section 4.1] and [9]) and to von Mises expansions, a
generalization of the projection method (a technique discussed in more detail in Section 2).
For further reading we refer to [21, Chapter 6] and [10].

A more detailed discussion would require a number of technical concepts and definitions.
We therefore restrict ourselves to one illustration.

Example 4. Let Ty, ..., T, denote iid nonnegative survival times with a continuous distribu-
tion function F' and let C1, ..., C, denote iid nonnegative censoring times with a continuous
distribution function G. For i =1,...,n, we denote X; = min(T;, C;) and 6; = KT; < C;}.
Let F,(t) denote the product-limit or Kaplan-Meier estimator (stat06033) for F(t). With
An(t) the Nelson-Aalen estimator (stat06045) and A(t) the cumulative hazard func-
tion (stat04288), a U-statistic representation has been established in [5] for A, (t) — A(t).
On the basis of the relation

A

Fo(t) — F(t) = exp[=A(t)] x {1 — exp[—(An(t) — A(t)]}

and using Taylor expansion (stat00778) ideas, a U-statistic representation for the Kaplan-
Meier estimator can be obtained.

2 Asymptotic Properties

A basic contribution to the study of the asymptotic behavior of U-statistics (see Large-
sample Theory (stat05876)) is the following result.

Theorem 1. If E|h(Xy,...,Xn)| < oo, then U, — 0(F) almost surely (a.s.).

This theorem states that the classical strong law of large numbers (stat05877) for
the sample mean generalizes to U-statistics. Various proofs are available. They rely on the
martingale structure of U-statistics mentioned above. For full proofs and references to the
original papers, see Lee [19, Section 3.4].

Next, we briefly discuss the asymptotic distribution theory for U-statistics. The limit
distribution of a (properly standardized) U-statistic will be Gaussian if we can obtain a
stochastic approximation Un of iid structure that is close to U,, (in the sense that U,, inherits
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the asymptotic distributional behavior of Un) The appropriate approximation is obtained
from the projection technique, which is in fact the first term in the Hoeffding decomposition.
We have

U, = Z E(U,|X;) — (n—1)0(F).

With . .
hl(x):/_ /_ h(x,za, ..., xm)dF (z2) - dF(z,,) — 0(F)

we can write

A

U = 6(F) = = Z hi(X,).

If hy = 0, then the U-statistic is said to be degenerate (of order 1); otherwise, the U-
statistic is nondegenerate. Degenerate U-statistics do not admit an iid approximation, and
as a consequence the limit distribution is not Gaussian. For nondegenerate U-statistics the
following central limit result is valid.

Theorem 2. [1/]. If ER*(Xy, ..., X;n) < o0 and ¢ = Var(h(Xy)) > 0 (ie., U, is

nondegenerate), then
U, —0(F
Vn[Up, — 0(F)] 4

(m;"”)
where Z is a standard normal (stat01090) random variable.

Y

A simple calculation shows that
G = E{[h(X1, Xo, ..., X}n) — 0(F)|[M( X1, Xing1, - -, Xom—1) — O(F)]}.

For a degenerate U-statistic (i.e., the first term in the Hoeffding decomposition vanishes and
G = 0) with ¢z = E{[h(X1, X3, X3, ..., Xin) = O(F)][2( X1, X2, Xing1, - -, Xome2) = 0(F)]} >
0, we have

U, —0(F) = mngnm_—ll)) 1<Z< ho (X5, X;) + 23 (T)Uy(f)'
<1<g<n c=

For hs, define the integral operator

400
Ax(z) = / ha(,y) 2(y)AF (y),

o0
where z is square integrable with respect to F. Let A1, Ag, ... denote the real (not necessarily
distinct) eigenvalues corresponding to the distinct solutions 2, 2, ... of the equation Az =
Az

Theorem 3. [12]. If E[h*(X1, ..., X;,)] < oo and { = 0 < (, then

(U, — 0(F)] 4 T =1y,

2 Y



where Y is a random variable of the form Y = 3722, Aj[x5(1) — 1], where xi(1), x3(1), - ..
are independent x*(1) (stat00936) random variables (see Convergence in Distribution
and in Probability (stat02847)).

Example 5. For the sample variance an application of Theorem 5 yields (with py the k-th
central moment): if uy < oo and pg — p3 > 0, then /n(S? — us) has a limiting normal
distribution with mean zero and variance g — a.

Example 6. Under the null hypothesis F' = Fy, the Cramér-von Mises statistic is a de-
generate U-statistic. Then Theorem 6 holds with the eigenvalues \; = (jm)~2. See [7] for
details.

3

Remarks and Extensions

. For U-statistics with a kernel of degree m > 2, higher-order terms in the Hoeffding

decomposition might vanish (i.e., higher-order degeneracy). Asymptotic distribution
theory has been established in the literature. The resulting limit distributions are
characterized in terms of multiple Wiener integrals [8].

. We reviewed some basic results for one-sample U-statistics. Extensions to multi-sample

or generalized U-statistics are available. See the books by Lee [19], Koroljuk & Borovs-
kich [18] and Borovskikh [4] for details. These books also deal with other variations on
the theme: incomplete U-statistics, random U-statistics, weighted U-statistics, gener-
alized L-statistics, Edgeworth expansions (stat05844) for U-statistics, among many
others.

. Bootstrap (stat02662) theory for U-statistics is reviewed in Janssen [17]. Bickel &

Freedman [3] is a basic reference.

. A further important topic, especially for applications in nonparametric density and

regression estimation, is the study of U-statistics with the kernel depending on the
sample size n. Key references are Jammalamadaka & Janson [16] and Mammen [20].
We also mention the work by Frees [11] on infinite order U-statistics.

. In Serfling [22] the study of U-processes and U-quantiles is initiated. Important con-

tributions on U-processes and U-quantiles include Arcones & Giné [2], Stute [23], and
Arcones [1]. Keywords in the development of new results for U-processes are martin-
gales and decoupling. For details we refer to the book by de la Pena & Giné [6].

. Non-asymptotic rates of convergence of the Gaussian and bootstrap approximations

for multivariate U-statistics (of degree 2) in high dimensions are derived in Chen
[24]. Computational and statistical trade-off for distributional approximations of high-
dimensional U-statistics can be found in Chen & Kato [25].
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